Câu 24 trang 205 SGK Đại số và Giải tích 11 Nâng cao

Viết phương trình tiếp tuyến của đồ thị hàm số

Lựa chọn câu để xem lời giải nhanh hơn

Viết phương trình tiếp tuyến của đồ thị hàm số

LG a

\(y = {{x - 1} \over {x + 1}}\), biết hoành độ tiếp điểm là x0 = 0

Phương pháp giải:

Phương trình tiếp tuyến tại điểm \(M(x_0;y_0)\) là:

\(y-y_0=f'(x_0)(x-x_0)\)

Lời giải chi tiết:

\(\eqalign{  & f\left( x \right) = {{x - 1} \over {x + 1}}  \cr  & {x_0} = 0 \Rightarrow {y_0} = f\left( 0 \right) =  - 1  \cr  & f'\left( x \right) \cr & = \frac{{\left( {x - 1} \right)'\left( {x + 1} \right) - \left( {x - 1} \right)\left( {x + 1} \right)'}}{{{{\left( {x + 1} \right)}^2}}} \cr &= \frac{{x + 1 - x + 1}}{{{{\left( {x + 1} \right)}^2}}}\cr & = {2 \over {{{\left( {x + 1} \right)}^2}}} \cr &\Rightarrow f'\left( 0 \right) = 2 \cr} \)

Phương trình tiếp tuyến cần tìm là :

\(y - \left( { - 1} \right) = 2\left( {x - 0} \right) \Leftrightarrow y = 2x - 1\)

LG b

 \(y = \sqrt {x + 2} ,\) biết tung độ tiếp điểm là y0 = 2.

Lời giải chi tiết:

\(\eqalign{  & f\left( x \right) = \sqrt {x + 2} \cr &f\left( {{x_0}} \right) = 2 \Leftrightarrow \sqrt {{x_0} + 2}  = 2 \cr &\Leftrightarrow {x_0} = 2  \cr  & f'\left( x \right) = {1 \over {2\sqrt {x + 2} }} \Rightarrow f'\left( 2 \right) = {1 \over 4} \cr} \)

Phương trình tiếp tuyến cần tìm là :

\(y - 2 = {1 \over 4}\left( {x - 2} \right) \Leftrightarrow y = {{x + 6} \over 4}\)

HocTot.Nam.Name.Vn

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close