Câu 2.39 trang 77 sách bài tập Giải tích 12 Nâng cao

Hãy sử dụng tính chất của lôgarit để đơn giản biểu thức

Lựa chọn câu để xem lời giải nhanh hơn

Hãy sử dụng tính chất của lôgarit để đơn giản biểu thức

LG a

\(2,{3^{{{\log }_{2,3}}2}}\)

Phương pháp giải:

Sử dụng công thức  \({a^{{{\log }_a}b}} = b\)

Lời giải chi tiết:

2

LG b

\({\pi ^{{{\log }_\pi }5}}\)

Phương pháp giải:

Sử dụng công thức  \({a^{{{\log }_a}b}} = b\)

Lời giải chi tiết:

5

LG c

\({2^{{{\log }_2}5}}\)

Lời giải chi tiết:

5

LG d

\(3,{8^{{{\log }_{3,8}}11}}\)

Lời giải chi tiết:

11

LG e

\({5^{1 + {{\log }_5}3}}\)

Lời giải chi tiết:

15

LG g

\({10^{1 - \log 2}}\) 

Lời giải chi tiết:

5

LG h

\({\left( {{1 \over 7}} \right)^{1 + {{\log }_{{1 \over 7}}}2}}\)

Lời giải chi tiết:

\({2 \over 7}\)

LG i

\({3}^{2-{{\log }_3}18;}\)

Lời giải chi tiết:

\({1 \over 2}\)

LG k

\({4}^{2{{\log }_4}3}\)

Lời giải chi tiết:

9

LG l

\({5}^{3\log _5{1 \over 2}};\)

Lời giải chi tiết:

\({1 \over 8}\)

LG m

\({\left( {{1 \over 2}} \right)}^{4{{\log }_{{1 \over 2}}}3};\)

Lời giải chi tiết:

81

LG n

\({6}^{2{{\log }_6}5.}\)

Lời giải chi tiết:

25

HocTot.Nam.Name.Vn

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM; 70+ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

close