Câu 18 trang 204 SGK Đại số và Giải tích 11 Nâng caoTìm đạo hàm của mỗi hàm số sau :
Lựa chọn câu để xem lời giải nhanh hơn
Tìm đạo hàm của mỗi hàm số sau : LG a \(y = \left( {{x^7} + {x}} \right)^2\) Phương pháp giải: Khai triển hằng đẳng thức và tính đạo hàm. Lời giải chi tiết: Ta có: \(y = {x^{14}} + 2{x^8} + {x^2} \) \(\Rightarrow y' = 14{x^{13}} + 16{x^7} + 2x\). Cách khác: LG b \(y = \left( {{x^2} + 1} \right)\left( {5 - 3{x^2}} \right)\) Phương pháp giải: Sử dụng công thức đạo hàm của tích (uv)'=u'v+uv' Lời giải chi tiết: \(\eqalign{ & y' = \left( {{x^2} + 1} \right)'\left( {5 - 3{x^2}} \right) + \left( {{x^2} + 1} \right)\left( {5 - 3{x^2}} \right)' \cr & = 2x\left( {5 - 3{x^2}} \right) - 6x\left( {{x^2} + 1} \right) \cr & = 10x - 6{x^3} - 6{x^3} - 6x\cr &= 4x - 12{x^3} \cr} \) LG c \(y = {{2x} \over {{x^2} - 1}}\) Phương pháp giải: Đạo hàm của thương \(\left( {\frac{u}{v}} \right)' = \frac{{u'v - uv'}}{{{v^2}}}\) Lời giải chi tiết: \(y' \) \( = \frac{{\left( {2x} \right)'\left( {{x^2} - 1} \right) - 2x\left( {{x^2} - 1} \right)'}}{{{{\left( {{x^2} - 1} \right)}^2}}}\) \(= {{2\left( {{x^2} - 1} \right) - 2x\left( {2x} \right)} \over {{{\left( {{x^2} - 1} \right)}^2}}} \) \( = \frac{{ - 2{x^2} - 2}}{{{{\left( {{x^2} - 1} \right)}^2}}}\) \(= {{ - 2\left( {{x^2} + 1} \right)} \over {{{\left( {{x^2} - 1} \right)}^2}}}\) LG d \(y = {{5x - 3} \over {{x^2} + x + 1}}\) Lời giải chi tiết: \(y' = {{ - 5{x^2} + 6x + 8} \over {{{\left( {{x^2} + x + 1} \right)}^2}}}\) LG e \(y = {{{x^2} + 2x + 2} \over {x + 1}}\) Lời giải chi tiết: \(y' = {{{x^2} + 2x} \over {{{\left( {x + 1} \right)}^2}}}\) LG f \(y = x\left( {2x - 1} \right)\left( {3x + 2} \right)\) Lời giải chi tiết: \(\eqalign{ & y = 18{x^2} + 2x - 2 \cr} \) HocTot.Nam.Name.Vn
|