Câu 18 trang 103 SGK Hình học 11 Nâng cao

Cho hình chóp S.ABCD có SA ⊥ mp(ABC), các tam giác ABC và SBC không vuông. Gọi H và K lần lượt là trực tâm của tam giác ABC và SBC. Chứng minh rằng :

Đề bài

Cho hình chóp S.ABCD có SA ⊥ mp(ABC), các tam giác ABC và SBC không vuông. Gọi H và K lần lượt là trực tâm của tam giác ABC và SBC.

Chứng minh rằng :

a. AH, SK, BC đồng quy ;

b. SC ⊥ mp(BHK)

c. HK ⊥ mp(SBC).

Lời giải chi tiết

 

a. Gọi I là giao điểm của hai đường thẳng AH và BC

Ta có : BC ⊥ AH (do H là trực tâm ΔABC)

BC ⊥ SA (do SA ⊥ mp(ABC))

Suy ra BC ⊥ (SAI) mà SI ⊂ (SAI) nên BC ⊥ SI

K là trực tâm ΔSBC nên SI qua K

Vậy AH, SK, BC đồng quy tại I.

b. Ta có : BH ⊥ AC và BH ⊥ SA nên BH ⊥ mp(SAC)

Suy ra BH ⊥ SC

Mặt khác SC ⊥ BK nên SC ⊥ mp(BHK)

c. Ta có: SC ⊥ HK (do HK ⊥ mp(BHK)) mà HK ⊥ BC (do BC ⊥ mp(ASI))

Vậy HK ⊥ mp(SBC)

HocTot.Nam.Name.Vn

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close