Bài 1.34 trang 17 SBT Giải tích 12 Nâng cao

Giải bài 1.34 trang 17 sách bài tập Giải tích 12 Nâng cao. Viết phương trình tiếp tuyến tại điểm I của đường cong...

Lựa chọn câu để xem lời giải nhanh hơn

Cũng câu hỏi như trong bài tập 1.33 đối với đường cong

\(y = {x^3} + 3{x^2} + 4x - 2\)

LG a

Viết phương trình tiếp tuyến tại điểm I của đường cong. Biết rằng hoành độ của I là nghiệm của phương trình y’’ = 0.

Lời giải chi tiết:

Ta có:

\(\begin{array}{l}
y' = 3{x^2} + 6x + 4\\
y'' = 6x + 6\\
y'' = 0 \Leftrightarrow 6x + 6 = 0\\
\Leftrightarrow x = - 1 \Rightarrow y\left( { - 1} \right) = - 4\\
\Rightarrow I\left( { - 1; - 4} \right)
\end{array}\)

Hệ số góc của tiếp tuyến tại I là:

\(k = y'\left( { - 1} \right) = 3.{\left( { - 1} \right)^2} + 6.\left( { - 1} \right) + 4 = 1\)

Phương trình tiếp tuyến: \(y = 1\left( {x + 1} \right) - 4 \Leftrightarrow y = x - 3\)

Vậy điểm I (-1;-4); phương trình tiếp tuyến của đường cong  tại điểm I là y = x - 3.

LG b

Xét vị trí tương đối của đường cong (C) và tiếp tuyến tại điểm I của (C) (tức là xác định các khoảng trên đó (C) nằm phía trên hoặc phía dưới tiếp tuyến)

Lời giải chi tiết:

Ta có:

\(\begin{array}{l}
{x^3} + 3{x^2} + 4x - 2 > x - 3\\
\Leftrightarrow {x^3} + 3{x^2} + 3x + 1 > 0\\
\Leftrightarrow {\left( {x + 1} \right)^3} > 0\\
\Leftrightarrow x + 1 > 0\\
\Leftrightarrow x > - 1
\end{array}\)

Do đó,

+) Trên khoảng \(\left( { - \infty ; - 1} \right)\) đường cong (C) nằm phía dưới tiếp tuyến

+) Trên khoảng \(\left( { - 1; + \infty } \right)\) đường cong (C) nằm phía trên tiếp tuyến.

HocTot.Nam.Name.Vn

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close