Bài 1.20 trang 13 SBT Giải tích 12 Nâng caoGiải bài 1.20 trang 13 sách bài tập Giải tích 12 Nâng cao. Tìm các số thực p và q sao cho hàm số... Đề bài Tìm các số thực p và q sao cho hàm số \(f(x) = x + p + {q \over {x + 1}}\) Đạt cực đại tại điểm \(x = - 2{\rm{ }}\) và \({\rm{ }}f\left( { - 2} \right) = - 2\). Lời giải chi tiết Ta có \(f'(x) = 1 - {q \over {{{\left( {x + 1} \right)}^2}}}\) với mọi \(x \ne - 1\) - Nếu \(q \le 0\) thì \(f'(x) > 0\) với mọi \(x \ne - 1\). Do đó hàm số đồng biến trên mỗi khoảng \(\left( { - \infty ; - 1} \right)\) và \(\left( { - 1; + \infty } \right)\). Hàm số không có cực đại, cực tiểu. - Nếu q > 0 thì phương trình \(f'(x) = {{{x^2} + 2x + 1 - q} \over {{{\left( {x + 1} \right)}^2}}} = 0\) Có hai nghiệm phân biệt \({x_1} = - 1 - \sqrt q \) và \({x_2} = - 1 + \sqrt q \) Hàm số đạt cực đại tại điểm \({x_1} = - 1 - \sqrt q \) và đạt cực tiểu tại điểm \({x_2} = - 1 + \sqrt q \). Hàm số đạt cực đại tại điểm x = -2 khi và chỉ khi \( - 1 - \sqrt q = - 2 \Leftrightarrow \sqrt q = 1 \) \(\Leftrightarrow q = 1\) \(f(-2) = - 2 \Leftrightarrow p = 1\) HocTot.Nam.Name.Vn
|