Bài 10 trang 107 SGK Đại số 10Cho a>0, b>0. Chứng minh rằng: Đề bài Cho \(a>0, \, b>0\). Chứng minh rằng: \({a \over {\sqrt b }} + {b \over {\sqrt a }} \ge \sqrt a + \sqrt b. \) Video hướng dẫn giải Phương pháp giải - Xem chi tiết Áp dụng bất đẳng thức Cô-si. Lời giải chi tiết Cách 1: Sử dụng BĐT Cô - si: Cách 2: Sử dụng phép biến đổi tương đương: Cách 3: Đặt ẩn phụ kết hợp BĐT Cô - si Đặt \(x=\sqrt a, y = \sqrt b\) (với \(x>0\) và \(y>0\)) ta được: \({a \over {\sqrt b }} = {{{x^2}} \over y}; \, \, {b \over {\sqrt a }} = {{{y^2}} \over x}\) Suy ra: \({a \over {\sqrt b }} + {b \over {\sqrt a }} = {{{x^2}} \over y} + {{{y^2}} \over x} = {{{x^3} + {y^3}} \over {xy}} \)\(= {{(x + y)({x^2} + {y^2} - xy)} \over {xy}}\) (1) Mà \(x^2+y^2≥ 2xy\) (Bất đẳng thức Cô-si) Nên \(x^2+y^2- xy ≥ xy ⇔\) \({{{x^2} + {y^2} - xy} \over {xy}} \ge 1\) Do đó (1) \({{{x^3} + {y^3}} \over {xy}}≥ x+y ⇔ {{{x^2}} \over y} + {{{y^2}} \over x} \ge x + y\) \(⇔ {a \over {\sqrt b }} + {b \over {\sqrt a }} \ge \sqrt a + \sqrt b \,(đpcm).\) HocTot.Nam.Name.Vn
|