Câu 1 trang 130 SGK Đại số và Giải tích 11 Nâng cao

Chứng minh rằng

Lựa chọn câu để xem lời giải nhanh hơn

Chứng minh rằng các dãy số với số hạng tổng quát sau đây có giới hạn 0 :

LG a

\({{{{\left( { - 1} \right)}^n}} \over {n + 5}}\)

Phương pháp giải:

Sử dụng định lý:

Cho hai dãy số \(\left( {{u_n}} \right),\left( {{v_n}} \right)\).

Nếu \(\left| {{u_n}} \right| \le {v_n}\) với mọi n và \(\lim {v_n} = 0\) thì \(\lim {u_n} = 0\).

Lời giải chi tiết:

Ta có:

\(\left| {{{{{\left( { - 1} \right)}^n}} \over {n + 5}}} \right| = {1 \over {n + 5}} < {1 \over n}\) \(\text{ và }\,\lim {1 \over n} = 0 \Rightarrow \lim {{{{\left( { - 1} \right)}^n}} \over {n + 5}} = 0\)

LG b

\({{\sin n} \over {n + 5}}\)

Lời giải chi tiết:

\(\left| {{{\sin n} \over {n + 5}}} \right| \le {1 \over {n + 5}} < {1 \over n}\) \(\text{ và }\,\lim {1 \over n} = 0 \Rightarrow \lim {{\sin n} \over {n + 5}} = 0\)

LG c

\({{\cos 2n} \over {\sqrt n + 1}}\)

Lời giải chi tiết:

\(\left| {{{\cos 2n} \over {\sqrt n + 1}}} \right| \le {1 \over {\sqrt n + 1}} < {1 \over {\sqrt n }},\lim{1 \over {\sqrt n }} = 0\) \( \Rightarrow \lim {{\cos 2n} \over {\sqrt n + 1}} = 0\)

HocTot.Nam.Name.Vn

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close