Nội dung từ Loigiaihay.Com
Với những giá trị nào của $x$ thì giá trị của biểu thức \({(x + 1)^2} - 4\) không lớn hơn giá trị của biểu thức \({(x - 3)^2}\).
$x < \dfrac{3}{2}$
$x > \dfrac{3}{2}$
$x \le \dfrac{3}{2}$
$x \ge \dfrac{3}{2}$
+ Cho \({\left( {x + 1} \right)^2} - 4 \le {\left( {x - 3} \right)^2}\) rồi khai triển hằng đẳng thức và sử dụng các quy tắc chuyển vế, quy tắc nhân với một số để giải bất phương trình.
Từ giả thiết suy ra \({\left( {x + 1} \right)^2} - 4 \le {\left( {x - 3} \right)^2}\)
\(\begin{array}{l} {x^2} + 2x + 1 - 4 \le {x^2} - 6x + 9\\{x^2} + 2x + 1 - 4 - {x^2} + 6x - 9 \le 0\\ 8x \le 12\\ x \le \dfrac{3}{2}\end{array}\)
Vậy \(x \le \dfrac{3}{2}\) là giá trị cần tìm.
Đáp án : C
Các bài tập cùng chuyên đề
Biểu diễn tập nghiệm của bất phương trình \(x \ge 8\) trên trục số, ta được
Bất phương trình nào sau đây là bất phương trình bậc nhất một ẩn? Hãy chọn câu đúng?
Bất phương trình \(x - 2 > 4,\) phép biến đổi nào sau đây là đúng?
Bất phương trình $x - 2 < 1$ tương đương với bất phương trình sau:
Bất phương trình bậc nhất $2x - 2 > 4$ có tập nghiệm biểu diễn bởi hình vẽ sau:
Hãy chọn câu đúng. Tập nghiệm của bất phương trình \(1 - 3x \ge 2 - x\) là:
Hãy chọn câu đúng, \(x = - 3\) là một nghiệm của bất phương trình:
Hình vẽ dưới đây biểu diễn tập nghiệm của bất phương trình nào?
Với giá trị của m thì phương trình $x - 2 = 3m + 4$ có nghiệm lớn hơn 3:
Số nguyên nhỏ nhất thỏa mãn bất phương trình $\dfrac{{x + 4}}{5} - x + 5 < \dfrac{{x + 3}}{3} - \dfrac{{x - 2}}{2}$ là
Bất phương trình $2{(x + 2)^2} < 2x(x + 2) + 4$ có nghiệm là
Kết luận nào sau đây là đúng khi nói về nghiệm của bất phương trình $\;(x + 3)(x + 4) > (x - 2)(x + 9) + 25$.
Tìm $x$ để phân thức \(\dfrac{4}{{9 - 3x}}\) không âm.
Tìm \(x\) để biểu thức sau có giá trị dương $A = \dfrac{{x + 27}}{5} - \dfrac{{3x - 7}}{4}$
Với điều kiện nào của \(x\) thì biểu thức \(B = \dfrac{{2x - 4}}{{3 - x}}\) nhận giá trị âm.
Tìm \(x\) để $P = \dfrac{{x - 3}}{{x + 1}}$ có giá trị lớn hơn \(1\).
Tìm số nguyên $x$ thỏa mãn cả hai bất phương trình:
\(\dfrac{{x + 2}}{5} - \dfrac{{3x - 7}}{4} > - 5\) và \(\dfrac{{3x}}{5} - \dfrac{{x - 4}}{3} + \dfrac{{x + 2}}{6} > 6\)
Giải bất phương trình \(\left( {{x^2} - 4} \right)\left( {x - 3} \right) \ge 0\) ta được:
Số nguyên lớn nhất thỏa mãn bất phương trình \(\dfrac{{1987 - x}}{{15}} + \dfrac{{1988 - x}}{{16}} + \dfrac{{27 + x}}{{1999}} + \dfrac{{28 + x}}{{2000}} > 4\) là