Đề bài

Cho hàm số \(y = 3{x^4} + 2\left( {m - 2018} \right){x^2} + 2017\) với \(m\) là tham số thực. Tìm giá trị của \(m\) để đồ thị hàm số có ba điểm cực trị tạo thành tam giác có một góc bằng \({120^0}\).

  • A.

    \(m =  - 2018.\)               

  • B.

    \(m =  - 2017.\)

  • C.

    \(m = 2017.\)

  • D.

    \(m = 2018.\)

Phương pháp giải

- Bước 1: Tính \(y'\).

- Bước 2: Ba điểm cực trị \(A,B,C\) trong đó \(A\left( {0;c} \right)\) tạo thành tam giác có góc cân ở đỉnh bằng \(\alpha \) cho trước

\( \Leftrightarrow \dfrac{{\overrightarrow {AB} .\overrightarrow {AC} }}{{\left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {AC} } \right|}} = \cos \alpha \)

- Bước 3: Kết luận.

Lời giải của GV HocTot.Nam.Name.Vn

 Ta có $y' = 12{x^3} + 4\left( {m - 2018} \right)x;{\rm{ }}y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\3{x^2} = 2018 - m\end{array} \right..$

Để hàm số có ba điểm cực trị $ \Leftrightarrow 2018 - m > 0 \Leftrightarrow m < 2018$.

Khi đó, tọa độ các điểm cực trị của đồ thị hàm số là:

\(A\left( {0;2017} \right),B\left( {\sqrt {\dfrac{{2018 - m}}{3}} ; - \dfrac{{{{\left( {m - 2018} \right)}^2}}}{3} + 2017} \right),C\left( { - \sqrt {\dfrac{{2018 - m}}{3}} ; - \dfrac{{{{\left( {m - 2018} \right)}^2}}}{3} + 2017} \right)\)

Do tam giác $ABC$ cân tại $A$ nên ycbt \( \Leftrightarrow 3A{B^2} = B{C^2}\)

\( \Leftrightarrow 3\left[ {\dfrac{{2018 - m}}{3} + \dfrac{{{{\left( {m - 2018} \right)}^4}}}{9}} \right] = 4\dfrac{{2018 - m}}{3}\)\( \Leftrightarrow {\left( {m - 2018} \right)^3} =  - 1 \Leftrightarrow m = 2017\) (thỏa mãn)

Đáp án : C

Các bài tập cùng chuyên đề

Bài 1 :

Tìm tất cả các giá trị của $m$ để hàm số $y = \dfrac{{m{x^3}}}{3} - m{x^2} + x - 1$  có cực đại và cực tiểu.

Xem lời giải >>
Bài 2 :

Tìm tất cả các giá trị của $m$ để đồ thị hàm số $y =  - {x^4} + 2m{x^2}$ có $3$ điểm cực trị ?

Xem lời giải >>
Bài 3 :

Cho hàm số $y = 2{x^4} - \left( {m + 1} \right){x^2} - 2.$ Tất cả các giá trị của $m$ để hàm số có $1$ điểm cực trị là:

Xem lời giải >>
Bài 4 :

Tìm tất cả các giá trị của $m$ để hàm số $y =  - \dfrac{1}{3}{x^3} + \dfrac{{m{x^2}}}{3} + 4$ đạt cực đại tại $x = 2?$

Xem lời giải >>
Bài 5 :

Tìm tất cả các giá trị của tham số $m$ để hàm số $y = {x^3} - 2m{x^2} + {m^2}x + 2$ đạt cực tiểu tại $x=1$.

Xem lời giải >>
Bài 6 :

Đồ thị hàm số $y = {x^3} - \left( {3m + 1} \right){x^2} + \left( {{m^2} + 3m + 2} \right)x + 3$ có điểm cực tiểu và điểm cực đại nằm về hai phía của trục tung khi:

Xem lời giải >>
Bài 7 :

Cho hàm số $y = \dfrac{1}{3}{x^3} - m{x^2} + (2m - 4)x - 3.$ Tìm $m$ để hàm số có các điểm cực đại, cực tiểu ${x_1};{x_2}$ thỏa mãn: $x_1^2 + x_2^2 = {x_1}.{x_2} + 10$

Xem lời giải >>
Bài 8 :

Cho hàm số $y = {x^3} - 3{x^2} + 3mx + 1.$ Tìm $m$ để hàm số có $2$ điểm cực trị nhỏ hơn $2$

Xem lời giải >>
Bài 9 :

Tìm $m$ để $({C_m})$ : $y = {x^4} - 2m{x^2} + 2$ có $3$ điểm cực trị là $3$ đỉnh của một tam giác vuông cân.

Xem lời giải >>
Bài 10 :

Cho hàm số $y = {x^4} - 2m{x^2} + 3m + 2.$ Tất cả các giá trị của $m$ để đồ thị hàm số có $3$ điểm cực trị tạo thành tam giác đều là:

Xem lời giải >>
Bài 11 :

Cho hàm số $y = {x^4} + 2\left( {1 - {m^2}} \right){x^2} + m + 1.$ Tất cả các giá trị của $m$ để đồ thị hàm số có $3$ điểm cực trị tạo thành tam giác có diện tích bằng $4\sqrt 2 $

Xem lời giải >>
Bài 12 :

Cho hàm số $y = {x^4} - 2m{x^2} + {m^2} + m.$ Tất cả các giá trị của $m$ để đồ thị hàm số có $3$ điểm cực trị tạo thành tam giác có một góc ${120^o}$ là:

Xem lời giải >>
Bài 13 :

Hãy lập phương trình đường thẳng $(d)$ đi qua các điểm cực đại và cực tiểu của đồ thị hàm số $y = {x^3} + 3m{x^2} - 3x$

Xem lời giải >>
Bài 14 :

Cho hàm số $y = 2{x^3} - 3\left( {m + 1} \right){x^2} + 6mx.$ Tìm $m$ để đồ thị hàm số có hai điểm cực trị là $A, B$ sao cho đường thẳng $AB$ vuông góc với $d:\,x - y - 9 = 0$

Xem lời giải >>
Bài 15 :

Cho hàm số $y = f\left( x \right)$ liên tục trên $R$ và có đồ thị như hình vẽ bên, một hàm số $g\left( x \right)$ xác định theo $f\left( x \right)$ có đạo hàm $g'\left( x \right) = f\left( x \right) + m$. Tìm tất cả các giá trị thực của tham số $m$ để hàm số $g\left( x \right)$ có duy nhất một cực trị.

Xem lời giải >>
Bài 16 :

Cho hàm số $y = {x^3} + 6{x^2} + 3\left( {m + 2} \right)x - m - 6$ với \(m\) là tham số thực. Tìm tất cả các giá trị của \(m\) để hàm số có hai điểm cực trị ${x_1},{\rm{ }}{x_2}$ thỏa mãn ${x_1} <  - 1 < {x_2}$.

Xem lời giải >>
Bài 17 :

Cho hàm số $y = 2{x^3} + m{x^2} - 12x - 13$ với \(m\) là tham số thực. Tìm giá trị của $m$ để đồ thị hàm số có hai điểm cực trị thỏa mãn khoảng cách từ chúng đến trục tung bằng nhau.

Xem lời giải >>
Bài 18 :

Cho hàm số \(y = {x^3} - 3m{x^2} + 4{m^2} - 2\) với \(m\) là tham số thực. Tìm giá trị của \(m\) để đồ thị hàm số có hai điểm cực trị \(A,{\rm{ }}B\) sao cho \(I\left( {1;0} \right)\) là trung điểm của đoạn thẳng \(AB\).

Xem lời giải >>
Bài 19 :

Gọi \({m_0}\)  là giá trị của \(m\) thỏa mãn đồ thị hàm số \(y = \dfrac{{{x^2} + mx - 5}}{{{x^2} + 1}}\)  có hai điểm cực trị \(A,B\)  sao cho đường thẳng \(AB\)  đi qua điểm\(I\left( {1; - 3} \right)\). Khẳng định nào sau đây là đúng?

Xem lời giải >>
Bài 20 :

Hàm số \(f\left( x \right) = \left| {\dfrac{x}{{{x^2} + 1}} - m} \right|\) (với \(m\) là tham số thực) có nhiều nhất bao nhiêu điểm cực trị?

Xem lời giải >>