Đề bài

Thực hiện các phép nhân:

a) \(\left( {3ab} \right).\left( {5bc} \right)\);

b) \(\left( { - 6{a^2}b} \right).\left( { - \frac{1}{2}a{b^3}} \right)\).

Phương pháp giải

Sử dụng kiến thức về nhân hai đơn thức để tính: Để nhân hai đơn thức, ta nhân các hệ số với nhau, nhân các lũy thừa cùng biến, rồi nhân các kết quả đó với nhau. 

Lời giải của GV HocTot.Nam.Name.Vn

a) \(\left( {3ab} \right).\left( {5bc} \right) = \left( {3.5} \right)a.\left( {b.b} \right)c = 15a{b^2}c\);

b) \(\left( { - 6{a^2}b} \right).\left( { - \frac{1}{2}a{b^3}} \right) = \left[ {\left( { - 6} \right)\left( { - \frac{1}{2}} \right)} \right]\left( {{a^2}.a} \right)\left( {b.{b^3}} \right) = 3{a^3}{b^4}\).

Xem thêm : SBT Toán 8 - Chân trời sáng tạo

Các bài tập cùng chuyên đề

Bài 1 :

Tích của hai đơn thức \(6{x^2}yz\) và \( - 2{y^2}{z^2}\) là đơn thức
A. \(4{x^2}{y^3}{z^3}\)
B. \( - 12{x^2}{y^3}{z^3}\)
C. \( - 12{x^3}{y^3}{z^3}\)
D. \(4{x^3}{y^3}{z^3}\).

Xem lời giải >>
Bài 2 :

Hình hộp chữ nhật \(A\) có chiều rộng \(2x\), chiều dài và chiều cao đề gấp \(k\) lần chiều rộng (Hình 2).

 

a) Tính diện tích đáy của \(A\).

b) Tính thể tích của \(A\).

Xem lời giải >>
Bài 3 :

a) Tính tích: \(3{{\rm{x}}^2}.8{{\rm{x}}^4}\)

b) Nêu quy tắc nhân hai đơn thức cùng một biến

Xem lời giải >>
Bài 4 :

Tính tích của hai đơn thức: \({x^3}{y^7}\) và \( - 2{{\rm{x}}^5}{y^3}\).

Xem lời giải >>
Bài 5 :

Tính tích: \(\left( { - \dfrac{1}{2}xy} \right).\left( {8{{\rm{x}}^2} - 5{\rm{x}}y + 2{y^2}} \right)\).

Xem lời giải >>
Bài 6 :

Tính tích: \(9{{\rm{x}}^5}{y^4}.2{{\rm{x}}^4}{y^2}\).

Xem lời giải >>
Bài 7 :

Dựa theo cách làm như trong câu a và câu b của Hoạt động 2, hãy thu gọn tích

\(\left( {3x{y^2}} \right).\left( {5{x^2}{y^3}} \right)\)

Xem lời giải >>
Bài 8 :

Thực hiện các phép nhân sau:

a) \(\left( {\frac{1}{3}{x^4}} \right).\left( { - 9x{y^2}z} \right);\)

b)\(\left( {2{x^2}y{z^3}t} \right).\left( {5{x^3}{y^3}{z^4}} \right)\)

Xem lời giải >>
Bài 9 :

Tìm tích của các đơn thức sau rồi tìm bậc của đơn thức thu được:

a) \(\frac{2}{{15}}{x^4}{y^2}\) và \(\frac{5}{3}{x^2}{y^4}\);

b) \(\frac{1}{4}x{y^2}z\) và \( - 24xy{z^2}\)

Xem lời giải >>
Bài 10 :

Tính tích của các đơn thức sau rồi xác định hệ số, phần biến và bậc của đơn thức thu được:

a)     \(\frac{1}{7}{x^5}{y^3}\) và \(\frac{{35}}{9}{x^4}{y^2}\)

b)    \(\frac{3}{5}{x^2}{y^2}z\) và \( - 25{x^2}y{z^2}\)

Xem lời giải >>
Bài 11 :

Tìm ba số tự nhiên liên tiếp, biết tích của hai số sau lớn hơn tích của hai số trước là 12 đơn vị.

Xem lời giải >>
Bài 12 :

Khi thu gọn đơn thức \(3x{y^5}\left( { - \frac{2}{3}{x^3}{y^2}z} \right)\), ta được đơn thức

A. \(2{x^2}{y^3}z\)       

B. \( - 2{x^4}{y^7}z\)       

C. \( - 2{x^3}{y^6}z\)    

D. \( - \frac{2}{9}{x^4}{y^7}z\)

Xem lời giải >>
Bài 13 :

Thực hiện phép tính:

a) \({x^3}\left( { - \frac{5}{4}{x^2}y} \right).\left( {\frac{2}{5}{x^3}{y^4}} \right)\)

b) \(\left( { - \frac{3}{4}{x^5}{y^4}} \right)\left( {x{y^2}} \right)\left( { - \frac{8}{9}{x^2}{y^5}} \right)\)

Xem lời giải >>
Bài 14 :

Tích của hai đơn thức \(\sqrt 2 {x^3}{y^2}\) và \( - \sqrt 2 x{y^3}z\) là đơn thức

A. \( - 2{x^4}{y^5}\).

B. \(2{x^4}{y^5}z\).

C. \( - 2{x^4}{y^4}z\).

D. \( - 2{x^4}{y^5}z\).

Xem lời giải >>
Bài 15 :

Nhân hai đơn thức:

a) \(5{x^2}y\)\(2x{y^2}\).

b) \(\frac{3}{4}xy\) và \(8{x^3}{y^2}\).

c) \(1,5x{y^2}{z^3}\) và \(2{x^3}{y^2}z\).

Xem lời giải >>
Bài 16 :

Tích của hai đơn thức \(6{x^2}yz\) và \( - 2{y^2}{z^2}\) là đơn thức:

A. \(4{x^2}{y^3}{z^3}\).

B. \( - 12{x^2}{y^3}{z^3}\).

C. \( - 12{x^3}{y^3}{z^3}\).

D. \(4{x^3}{y^3}{z^3}\).

Xem lời giải >>
Bài 17 :

Nhân hai đơn thức \(5{x^4}{y^2}z\) và \(\frac{{ - 1}}{5}{x^3}y{z^2}\) ta được kết quả là

Xem lời giải >>
Bài 18 :

Tích của hai đơn thức \(\frac{1}{2}x{y^3}\) và \(x\left( { - 8y} \right)x{z^2}\) có phần hệ số là

Xem lời giải >>