Nội dung từ Loigiaihay.Com
Tìm tích của các đơn thức sau rồi tìm bậc của đơn thức thu được:
a) \(\frac{2}{{15}}{x^4}{y^2}\) và \(\frac{5}{3}{x^2}{y^4}\);
b) \(\frac{1}{4}x{y^2}z\) và \( - 24xy{z^2}\)
Sử dụng tính chất của phép nhân, quy tắc nhân hai lũy thừa cùng cơ số để tính tích và thu gọn các đơn thức.
Tìm bậc – tổng số mũ của biến- của các đơn thức thu được.
a) Ta có \(\frac{2}{{15}}{x^4}{y^2}.\frac{5}{3}{x^2}{y^4} = \frac{2}{{15}}.\frac{5}{3}{x^4}{x^2}{y^2}{y^4} = \frac{2}{9}{x^6}{y^6}\)
Bậc của đơn thức trên là 12.
b) Ta có \(\frac{1}{4}x{y^2}z.\left( { - 24xy{z^2}} \right) = \frac{1}{4}.\left( { - 24} \right)xx{y^2}yz{z^2} = - 6{x^2}{y^3}{z^3}\)
Bậc của đơn thức trên là 8.
Các bài tập cùng chuyên đề
Tích của hai đơn thức \(6{x^2}yz\) và \( - 2{y^2}{z^2}\) là đơn thức
A. \(4{x^2}{y^3}{z^3}\)
B. \( - 12{x^2}{y^3}{z^3}\)
C. \( - 12{x^3}{y^3}{z^3}\)
D. \(4{x^3}{y^3}{z^3}\).
Hình hộp chữ nhật \(A\) có chiều rộng \(2x\), chiều dài và chiều cao đề gấp \(k\) lần chiều rộng (Hình 2).
a) Tính diện tích đáy của \(A\).
b) Tính thể tích của \(A\).
a) Tính tích: \(3{{\rm{x}}^2}.8{{\rm{x}}^4}\)
b) Nêu quy tắc nhân hai đơn thức cùng một biến
Tính tích của hai đơn thức: \({x^3}{y^7}\) và \( - 2{{\rm{x}}^5}{y^3}\).
Tính tích: \(\left( { - \dfrac{1}{2}xy} \right).\left( {8{{\rm{x}}^2} - 5{\rm{x}}y + 2{y^2}} \right)\).
Tính tích: \(9{{\rm{x}}^5}{y^4}.2{{\rm{x}}^4}{y^2}\).
Dựa theo cách làm như trong câu a và câu b của Hoạt động 2, hãy thu gọn tích
\(\left( {3x{y^2}} \right).\left( {5{x^2}{y^3}} \right)\)
Thực hiện các phép nhân sau:
a) \(\left( {\frac{1}{3}{x^4}} \right).\left( { - 9x{y^2}z} \right);\)
b)\(\left( {2{x^2}y{z^3}t} \right).\left( {5{x^3}{y^3}{z^4}} \right)\)
Tính tích của các đơn thức sau rồi xác định hệ số, phần biến và bậc của đơn thức thu được:
a) \(\frac{1}{7}{x^5}{y^3}\) và \(\frac{{35}}{9}{x^4}{y^2}\)
b) \(\frac{3}{5}{x^2}{y^2}z\) và \( - 25{x^2}y{z^2}\)
Tìm ba số tự nhiên liên tiếp, biết tích của hai số sau lớn hơn tích của hai số trước là 12 đơn vị.
Thực hiện các phép nhân:
a) \(\left( {3ab} \right).\left( {5bc} \right)\);
b) \(\left( { - 6{a^2}b} \right).\left( { - \frac{1}{2}a{b^3}} \right)\).
Khi thu gọn đơn thức \(3x{y^5}\left( { - \frac{2}{3}{x^3}{y^2}z} \right)\), ta được đơn thức
A. \(2{x^2}{y^3}z\)
B. \( - 2{x^4}{y^7}z\)
C. \( - 2{x^3}{y^6}z\)
D. \( - \frac{2}{9}{x^4}{y^7}z\)
Thực hiện phép tính:
a) \({x^3}\left( { - \frac{5}{4}{x^2}y} \right).\left( {\frac{2}{5}{x^3}{y^4}} \right)\)
b) \(\left( { - \frac{3}{4}{x^5}{y^4}} \right)\left( {x{y^2}} \right)\left( { - \frac{8}{9}{x^2}{y^5}} \right)\)
Tích của hai đơn thức \(\sqrt 2 {x^3}{y^2}\) và \( - \sqrt 2 x{y^3}z\) là đơn thức
A. \( - 2{x^4}{y^5}\).
B. \(2{x^4}{y^5}z\).
C. \( - 2{x^4}{y^4}z\).
D. \( - 2{x^4}{y^5}z\).
Nhân hai đơn thức:
a) \(5{x^2}y\) và \(2x{y^2}\).
b) \(\frac{3}{4}xy\) và \(8{x^3}{y^2}\).
c) \(1,5x{y^2}{z^3}\) và \(2{x^3}{y^2}z\).
Tích của hai đơn thức \(6{x^2}yz\) và \( - 2{y^2}{z^2}\) là đơn thức:
A. \(4{x^2}{y^3}{z^3}\).
B. \( - 12{x^2}{y^3}{z^3}\).
C. \( - 12{x^3}{y^3}{z^3}\).
D. \(4{x^3}{y^3}{z^3}\).
Nhân hai đơn thức \(5{x^4}{y^2}z\) và \(\frac{{ - 1}}{5}{x^3}y{z^2}\) ta được kết quả là
Tích của hai đơn thức \(\frac{1}{2}x{y^3}\) và \(x\left( { - 8y} \right)x{z^2}\) có phần hệ số là