Đề bài

a) Giải phương trình \(\frac{{2\left( {x + 1} \right)}}{3} = \frac{{1 + 3x}}{4} + \frac{1}{2}\).

b) Vẽ đồ thị hàm số y = 2x – 1.

c) Cho hàm số bậc nhất \(y = ax + b\left( {a \ne 0} \right)\). Tìm các hệ số a và b, biết rằng khi x = 0 thì y = 5 và khi x = 2 thì y = 3.

Phương pháp giải

a) Đưa phương trình về dạng \(ax + b = 0\) để giải.

b) Lấy hai điểm thuộc đồ thị hàm số và vẽ đường thẳng đi qua hai điểm đó.

c) Thay các giá trị x và y đã cho vào hàm số để tìm a, b.

Lời giải của GV HocTot.Nam.Name.Vn

a) \(\frac{{2\left( {x + 1} \right)}}{3} = \frac{{1 + 3x}}{5} + \frac{1}{2}\)

\(\begin{array}{l}\frac{{10.2\left( {x + 1} \right)}}{{30}} = \frac{{6\left( {1 + 3x} \right)}}{{30}} + \frac{{15}}{{30}}\\20\left( {x + 1} \right) = 6\left( {1 + 3x} \right) + 15\\20x + 20 = 6 + 18x + 15\\20x - 18x = 6 + 15 - 20\\2x = 1\\x = \frac{1}{2}\end{array}\)

Vậy \(x = \frac{1}{2}\).

b) Vẽ đồ thị hàm số y = 2x – 1:

- Cho x = 0 thì y = 2.0 – 1 = -1, ta được điểm \(A\left( {0; - 1} \right)\) thuộc đồ thị hàm số.

- Cho y = 0 thì 0 = 2x – 1 suy ra x = \(\frac{1}{2}\) ta được điểm \(B\left( {\frac{1}{2};0} \right)\) thuộc đồ thị hàm số.

Đường thẳng AB chính là đồ thị hàm số y = 2x – 1.

c) Ta có:

+ Khi x = 0 thì y = 5, thay vào hàm số \(y = ax + b\left( {a \ne 0} \right)\) ta được:

\(5 = a.0 + b\) hay \(b = 5\).

Hàm số bậc nhất cần tìm trở thành \(y = ax + 5\).

+ Khi x = 2 thì y = 3, thay vào hàm số \(y = ax + 5\) ta được:

\(3 = 2.a + 5\) hay \(a =  - 1\).

Vậy hệ số \(a =  - 1\) và \(b = 5\).

Các bài tập cùng chuyên đề

Bài 1 :

Trong các phương trình sau, phương trình bậc nhất một ẩn là

Xem lời giải >>
Bài 2 :

Phương trình nào sau đây nhận \(m = 2\) là nghiệm?

Xem lời giải >>
Bài 3 :

Đường thẳng \(y = 3x + 2023\) tạo với trục Ox một góc như thế nào?

Xem lời giải >>
Bài 4 :

Cho mặt phẳng tọa độ Oxy và điểm A (như hình vẽ).

Khi đó tọa độ của điểm A là:

Xem lời giải >>
Bài 5 :

Một hộp có 4 tấm thẻ cùng loại được đánh số lần lượt: 2; 3; 4; 5. Chọn ngẫu nhiên một thẻ từ hộp, kết quả thuận lợi cho biến cố “Số ghi trên thẻ chia hết cho 5” là thẻ

Xem lời giải >>
Bài 6 :

Bạn An gieo một con xúc xắc 50 lần và thống kê kết quả các lần gieo ở bảng sau:

Xác suất thực nghiệm của biến cố “Gieo được mặt số chấm là số nguyên tố” là

Xem lời giải >>
Bài 7 :

Cục Rubik ở hình nào có dạng hình chóp tam giác đều?

Xem lời giải >>
Bài 8 :

Kim tự tháp Louvre (xây dựng vào năm 1988). Người ta làm mô hình một kim tự tháp ở cổng vào của bảo tàng Louvre. Mô hình có dạng hình chóp tứ giác đều có chiều cao 21 m, độ dài cạnh đáy là 34 m. Tính thể tích của kim tự tháp Louvre?

Xem lời giải >>
Bài 9 :

Cho hình vẽ

Khi đó các khẳng định sau

(1) $\Delta MKN\backsim \Delta PKM\text{  (g}\text{.g)}$.

(2) $\Delta MKP\backsim \Delta MNP\text{  (g}\text{.g)}$.

Hãy chọn đáp án đúng:

Xem lời giải >>
Bài 10 :

Cho hình vẽ sau, biết \(\widehat B = \widehat D,BC = 50cm,AB = 40cm,DE = 30cm\). Độ dài đoạn thẳng AD là:

Xem lời giải >>
Bài 11 :

Trong các hình đã học cặp hình nào sau đây luôn đồng dạng?

Xem lời giải >>
Bài 12 :

Trong hình dưới đây, hình b là hình a sau khi phóng to với kích thước k = 2. Nếu kích thước của hình a là 3 x 4 thì kích thước của hình b là:

Xem lời giải >>
Bài 13 :

Giải bài toán bằng cách lập phương trình

Có hai loại dung dịch muối I và II. Người ta hòa 200 gam dung dịch muối I với 300 gam dung dịch muối II thì được một dung dịch có nồng độ muối là 33%. Tính nồng độ muối trong dung dịch I và II, biết rằng nồng độ muối trong dung dịch I lớn hơn nồng độ muối trong dung dịch II là 20%.

Xem lời giải >>
Bài 14 :

1. Một cái lều ở trại hè của học sinh có dạng hình chóp tứ giác đều với chiều cao của mặt bên xuất phát từ đỉnh của chiếc lều là 2,24m và cạnh đáy bằng 2m. Tính diện tích vải bạt cần thiết để dựng lều (không tính đến đường viền, nếp gấp), biết lều này không có đáy.

2. Cho tam giác ANE vuông tại A có đường cao AB.

a) Chứng minh $\Delta ANE\backsim \Delta BEA$.

b) Chứng minh \(A{N^2} = NB.NE\).

c) Cho \(AN = 15cm,NE = 25cm\). Tia phân giác của góc N cắt cạnh AB tại I. Tính NI?

Xem lời giải >>
Bài 15 :

Tỉ lệ học sinh nam của lớp 8A là 60%, tổng số bạn lớp 8A là 40. Ngẫu nhiên gặp 1 thành viên nữ. Tính xác suất thực nghiệm của biến cố “Gặp một học sinh nữ của lớp”?

Xem lời giải >>
Bài 16 :

Cho \({a_1};{a_2};...;{a_{2024}}\) là 2024 số thực thỏa mãn \({a_k} = \frac{{2k + 1}}{{{{\left( {{k^2} + k} \right)}^2}}}\) với \(k \in \left\{ {1;2;...;2024} \right\}\).

Tính tổng \({S_{2024}} = {a_1} + {a_2} + {a_3} + ... + {a_{2024}}\).

Xem lời giải >>