Đề bài

Đạo hàm của hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{\sqrt {{x^3} + 2{x^2} + x + 4}  - 2}}{{x + 1}}{\rm{ khi }}x \ne  - 1\\0{\rm{                                 khi }}x =  - 1\end{array} \right.\)   tại \(x =  - 1\) là:

  • A.
    0
  • B.
    Không tồn tại.
  • C.
    \( - \frac{1}{4}\)
  • D.
    \(\frac{1}{2}\)
Phương pháp giải

Sử dụng Định nghĩa đạo hàm :

\(f'({x_0}) = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\Delta y}}{{\Delta x}}\) hoặc \(f'({x_0}) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f(x) - f({x_0})}}{{x - {x_0}}}\)

Lời giải của GV HocTot.Nam.Name.Vn

\(\begin{array}{l}f'( - 1) = \mathop {\lim }\limits_{x \to  - 1} \frac{{f(x) - f( - 1)}}{{x - ( - 1)}} = \mathop {\lim }\limits_{x \to  - 1} \frac{{\frac{{\sqrt {{x^3} + 2{x^2} + x + 4}  - 2}}{{x + 1}} - 0}}{{x + 1}} = \mathop {\lim }\limits_{x \to  - 1} \frac{{\sqrt {{x^3} + 2{x^2} + x + 4}  - 2}}{{{{\left( {x + 1} \right)}^2}}}\\ = \mathop {\lim }\limits_{x \to  - 1} \frac{{{x^3} + 2{x^2} + x + 4 - 4}}{{{{\left( {x + 1} \right)}^2}(\sqrt {{x^3} + 2{x^2} + x + 4}  + 2)}} = \mathop {\lim }\limits_{x \to  - 1} \frac{{{x^3} + 2{x^2} + x}}{{{{\left( {x + 1} \right)}^2}(\sqrt {{x^3} + 2{x^2} + x + 4}  + 2)}}\\ = \mathop {\lim }\limits_{x \to  - 1} \frac{{x({x^2} + 2x + 1)}}{{{{\left( {x + 1} \right)}^2}(\sqrt {{x^3} + 2{x^2} + x + 4}  + 2)}} = \mathop {\lim }\limits_{x \to  - 1} \frac{x}{{\sqrt {{x^3} + 2{x^2} + x + 4}  + 2}} = \frac{{ - 1}}{4}\end{array}\)

Đáp án C.

Đáp án : C

Các bài tập cùng chuyên đề

Bài 1 :

Đạo hàm của hàm số \(y = \sqrt {4{x^2} + 3x + 1} \) là hàm số nào sau đây?

Xem lời giải >>
Bài 2 :

Cho hàm số \(f\left( x \right) = a{x^3} + b{x^2} + cx + d\) với \(a,b,c,d \in R\);\(a > 0\) và \(\left\{ \begin{array}{l}d > 2021\\a + b + c + d - 2021 < 0\end{array} \right.\). Hỏi phương trình \(f\left( x \right) - 2021 = 0\) có mấy nghiệm phân biệt?

Xem lời giải >>
Bài 3 :

Cho hình chóp S.ABCSA (ABC)ΔABC vuông ở B. AH là đường cao của ΔSAB. Khẳng định nào sau đây sai ?

Xem lời giải >>
Bài 4 :

Cho hàm số \(y = \frac{{x - 1}}{{x - 2}}\), tiếp tuyến tại giao điểm của đồ thị hàm số với trục hoành có phương trình là:

Xem lời giải >>
Bài 5 :

Trong không gian, cho \(\alpha \) là góc giữa 2 mặt phẳng (P)(Q) nào đó. Hỏi góc \(\alpha \) thuộc đoạn nào?

Xem lời giải >>
Bài 6 :

Cho hàm số \(f(x) = \frac{{2x - 3}}{{x - 1}}\) , các mệnh đề sau, mệnh đề nào sai?

Xem lời giải >>
Bài 7 :

Kết quả khảo sát cân nặng của 20 quả táo ở mỗi lô hàng A và B được cho bởi bảng sau:

Hãy ước lượng cân nặng trung bình của mỗi quả táo ở hai lô hàng trên.

Xem lời giải >>
Bài 8 :

Cho hàm số \(y = {\mathop{\rm s}\nolimits} {\rm{inx}} - \cos x - 2x\). Bất phương trình \(y' < 0\) có tập nghiệm T là :

Xem lời giải >>
Bài 9 :

Cho hình chóp S.ABCDSA (ABCD) và đáy ABCD là hình vuông. Hỏi mp(SCD) vuông góc với mặt phẳng nào trong các mặt phẳng sau ?

Xem lời giải >>
Bài 10 :

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với mặt đáy ABCD và C. Hỏi khoảng cách từ điểm A tới mặt phẳng (SBC) bằng:

Xem lời giải >>
Bài 11 :

Cho hình chóp tứ giác đều S.ABCD. Đáy ABCD là hình vuông tâm O, gọi I là trung điểm của cạnh AD. Hỏi góc giữa 2 mặt phẳng (SAD)(ABCD) là:

Xem lời giải >>
Bài 12 :

Tính thời gian trung bình giải bài tập của học sinh lớp 11A được cho trong bảng sau:

Xem lời giải >>