Nội dung từ Loigiaihay.Com
Chọn khẳng định đúng:
\(\lim {u_n} = 0\) nếu \(\left| {{u_n}} \right|\) có thể nhỏ hơn môt số dương bé tùy ý, kể từ một số hạng nào đó trở đi.
\(\lim {u_n} = 0\) nếu \(\left| {{u_n}} \right|\) có thể lớn hơn môt số dương bé tùy ý, kể từ một số hạng nào đó trở đi.
\(\lim {u_n} = 0\) nếu \({u_n}\) có thể nhỏ hơn môt số dương bé tùy ý, kể từ một số hạng nào đó trở đi.
\(\lim {u_n} = 0\) nếu \({u_n}\) có thể lớn hơn môt số dương bé tùy ý, kể từ một số hạng nào đó trở đi.
Định nghĩa giới hạn hữu hạn trong SGK Đại số và Giải tích 11 - trang 112 (SGK Toán 11 cũ).
Định nghĩa 1:
\(\lim {u_n} = 0\) nếu \(\left| {{u_n}} \right|\) có thể nhỏ hơn môt số dương bé tùy ý, kể từ một số hạng nào đó trở đi.
Đáp án : A
Các bài tập cùng chuyên đề
Kết quả của giới hạn \(\lim \frac{{\sqrt[3]{n} + 1}}{{\sqrt[3]{{n + 8}}}}\) bằng:
Kết quả của giới hạn \(\lim \frac{{{3^n} - {{2.5}^{n + 1}}}}{{{2^{n + 1}} + {5^n}}}\) bằng:
Cho hai dãy \(\left( {{u_n}} \right)\) và \(\left( {{v_n}} \right)\) có \({u_n} = \frac{1}{n}\) và \({v_n} = \frac{{{{\left( { - 1} \right)}^n}}}{n}\). Biết rằng \(\left| {\frac{{{{\left( { - 1} \right)}^n}}}{n}} \right| \le \frac{1}{n}\). Chọn kết luận không đúng
Kết quả của giới hạn \(\lim \sqrt {{{2.3}^n} - n + 2} \)bằng:
Kết quả của giới hạn \(\lim \frac{{3\sin n + 4\cos n}}{{n + 1}}\)bằng:
Kết quả của giới hạn \(\lim \left( {5 - \frac{{n\cos 2n}}{{{n^2} + 1}}} \right)\) bằng:
Cho hai dãy \(\left( {{u_n}} \right)\) và \(\left( {{v_n}} \right)\) có \({u_n} = \frac{1}{{n + 1}}\) và \({v_n} = \frac{2}{{n + 2}}\). Khi đó \(\lim \frac{{{v_n}}}{{{u_n}}}\) có giá trị bằng
Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = \frac{{2n + b}}{{5n + 3}}\) trong đó b là tham số thực. Để dãy số có giới hạn hữu hạn, giá trị của b là
Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = \frac{{4{n^2} + n + 2}}{{a{n^2} + 5}}\) trong đó a là tham số thực. Để dãy số có giới hạn bằng 2, giá trị của a là
Tinh giới hạn \(L = \lim \left( {3{n^2} + 5n - 3} \right)\)
Giá trị của giới hạn \(\lim \left( {\sqrt {n + 5} - \sqrt {n + 1} } \right)\) bằng
Cho hai dãy \(\left( {{u_n}} \right)\) và\(\left( {{v_n}} \right)\) thỏa mãn \(\left| {{u_n}} \right| \le {v_n}\) với mọi n và \(\lim {v_n} = 0\)
Kết quả của giới hạn \(\lim \frac{{{n^3} - 2n}}{{1 - 3{n^2}}}\) là:
Kết quả của giới hạn \(\lim \left( {\frac{1}{{1.4}} + \frac{1}{{2.5}} + ... + \frac{1}{{n\left( {n + 3} \right)}}} \right)\) là:
Giá trị của giới hạn \(\lim \frac{{{1^2} + {2^2} + ... + {n^2}}}{{n\left( {{n^2} + 1} \right)}}\) bằng:
Cho dãy số \(\left( {{u_n}} \right)\) có giới hạn xác định bởi \(\left\{ \begin{array}{l}{u_1} = 2\\{u_{n + 1}} = \frac{{{u_n} + 1}}{2},n \ge 1\end{array} \right.\)
Tinh \(\lim {u_n}\)
Giá trị của giới hạn \(\lim \sqrt[3]{{{n^3} + 1}} - n\) là:
Số thập phân vô hạn tuần hoàn 0,5111… được biểu diễn bởi phân số tối giản \(\frac{a}{b}\). Tính tổng \(T = a + b\)
Có bao nhiêu giá trị nguyên a thuộc khoảng (0;20) sao cho \(\lim \sqrt {3 + \frac{{a{n^2} - 1}}{{3 + {n^2}}} - \frac{1}{{{2^n}}}} \) là một số nguyên.