Nội dung từ Loigiaihay.Com
Cho biểu thức \(H = \left( {x + 5} \right)({x^2}\;-5x + 25)-{\left( {2x + 1} \right)^3}\; + 7{\left( {x-1} \right)^3}\;-3x\left( { - 11x + 5} \right)\). Khi đó
\({\left( {A - B} \right)^3}\; = {A^3}\; - 3{A^2}B + 3A{B^2}\; - {B^3}\)và phép nhân đa thức với đơn thức rồi tìm đưa về bài toán tìm \(x\) đã biết.
\(\begin{array}{l}H = \left( {x + 5} \right)({x^2}\;-5x + 25)-{\left( {2x + 1} \right)^3}\; + 7{\left( {x-1} \right)^3}\;-3x\left( { - 11x + 5} \right)\\\,\,\,\,\,\,\,\, = {x^3} - 5{x^2} + 25x + 5{x^2} - 25x + 125 - \left( {8{x^3} + 12{x^2} + 6x + 1} \right) + 7\left( {{x^3} - 3{x^2} + 3x - 1} \right) + 33{x^2} - 15x\\\,\,\,\,\,\,\,\, = {x^3} + 125 - 8{x^3} - 12{x^2} - 6x - 1 + 7{x^3} - 21{x^2} + 21x - 7 + 33{x^2} - 15x\\\,\,\,\,\,\,\,\, = \left( {{x^3} - 8{x^3} + 7{x^3}} \right) + \left( { - 12{x^2} - 21{x^2} + 33{x^2}} \right) + \left( {{5^3} - 1 - 7} \right)\\\,\,\,\,\,\,\,\, = 117\end{array}\)
Vậy \(H\) là một số lẻ.
Đáp án : C
Các bài tập cùng chuyên đề
Chọn câu đúng?
Viết biểu thức \({x^3}\; + {{ 3}}{x^2}\; + {{ 3}}x + {{ 1}}\) dưới dạng lập phương của một tổng
Khai triển hằng đẳng thức \({\left( {x - 2} \right)^3}\) ta được
Hằng đẳng thức có được bằng cách thực hiện phép nhân \(\left( {A - B} \right).{\left( {A - B} \right)^2}\) là
Cho \(A + \frac{3}{4}{x^2} - \frac{3}{2}x + 1 = {\left( {B + 1} \right)^3}\). Khi đó
Tính nhanh: \({23^3} - {9.23^2} + 27.23 - 27\).
Viết biểu thức sau dưới dạng lập phương của một tổng hoặc một hiệu:\(8-{{ 36}}x + {{ 54}}{x^2}\;-{{ 27}}{x^3}\).
Giá trị của biểu thức \({x^3}\;-6{x^2}y + 12x{y^2}\;-8{y^3}\;\)tại \(x = 2021\) và \(y = 1010\) là
Tìm \(x\) biết \({x^3}\;-12{x^2}\; + 48x-64 = 0\)
Tính giá trị của biểu thức \(M = {\left( {x + 2y} \right)^3} - 6{\left( {x + 2y} \right)^2} + 12\left( {x + 2y} \right) - 8\) tại\(x = 20;\,y = 1\) .
Cho hai biểu thức \(P = {\left( {4x + 1} \right)^3}\;-\left( {4x + 3} \right)\left( {16{x^2}\; + 3} \right){\rm{, }}Q = {\left( {x-2} \right)^3}\;-x\left( {x + 1} \right)\left( {x-1} \right) + 6x\left( {x-3} \right) + 5x\). Tìm mối quan hệ giữa hai biểu thức \(P,\,Q\)?
Rút gọn biểu thức \(P = 8{x^3}\;-12{x^2}y + 6x{y^2}\;-{y^3}\; + 12{x^2}\;-12xy + 3{y^2}\; + 6x-3y + 11\) ta được
Cho biết \(Q = {\left( {2x-{\rm{ 1}}} \right)^3}\;-{\rm{ 8}}x\left( {x + 1} \right)\left( {x-1} \right) + {\rm{ 2}}x\left( {6x - 5} \right) = ax - b\,\,\left( {a,\,b \in \mathbb{Z}} \right)\). Khi đó
Biết giá trị \(x = a\,\,\) thỏa mãn biểu thức \(\;{(x + 1)^3} - {(x - 1)^3} - 6{(x - 1)^2} = 20\), ước của \(a\) là
Cho hai biểu thức
\(\;P = {\left( {4x + 1} \right)^3}\;-\left( {4x + 3} \right)(16{x^2}\; + 3);\,\,Q = {\left( {x-2} \right)^3}\;-x\left( {x + 1} \right)\left( {x-1} \right) + 6x\left( {x-3} \right) + 5x\). So sánh \(P\) và \(Q\)?
Cho \(\;2x-y = 9\). Giá trị của biểu thức
\(\;A = 8{x^3}\;-12{x^2}y + 6x{y^2}\;-{y^3}\; + 12{x^2}\;-12xy + 3{y^2}\; + 6x-3y + 11\) là
Giá trị của biểu thức \(Q = {a^3} - {b^3}\) biết \(a - b = 4\) và \(ab = - 3\) là
Biểu thức \({(a + b + c)^3}\)được phân tích thành
Cho \(\;a + b + c = 0\). Giá trị của biểu thức \(\;B = {a^3}\; + {b^3}\; + {c^3}\;-3abc\;\) là