Đề bài

Cho tam giác $ABC$  có \(\widehat A = {60^ \circ }\). Vẽ ra phía ngoài của tam giác hai tam giác đều $AMB$  và $ANC.$

  • A.

    Ba điểm $M,A,N$ thẳng hàng.

  • B.

    $BN = CM$

  • C.

    Cả A, B đều sai

  • D.

    Cả A, B đều đúng

Phương pháp giải

+ Ta sử dụng tính chất tam giác cân, tính chất tia phân giác của một góc, tính chất hai góc kề bù để chứng minh các cặp góc so le trong bằng nhau để chứng minh ba điểm $M,A,N$ thẳng hàng.

+ Chứng minh cạnh bằng nhau ta sử dụng các trường hợp bằng nhau của tam giác để chứng minh hai tam giác bằng nhau từ đó suy ra hai cạnh tương ứng bằng nhau.

Lời giải của GV HocTot.Nam.Name.Vn

+  Các tam giác $AMB$ và $ANC$  là các tam giác đều(gt) nên \(\widehat {MAB} = {60^0},\,\,\,\widehat {NAC} = {60^0}\).

Ta có: \(\widehat {MAB} + \widehat {BAC} + \widehat {CAN} = {60^0} + {60^0} + {60^0} = {180^0}.\)

Suy ra ba điểm $M,A,N$ thẳng hàng.

+  Ta có:

 $\widehat {MAC} = \widehat {MAB} + \widehat {BAC} = {60^0} + {60^0} = {120^0}\\\widehat {BAN} = \widehat {CAN} + \widehat {BAC} = {60^0} + {60^0} = {120^0}$

Do đó \(\widehat {MAC} = \widehat {BAN}\) .

Xét hai tam giác $ABN$  và $AMC$  có:

+) $AB = AM$ (do tam giác $AMB$ đều)

+) \(\widehat {BAN} = \widehat {MAC}\) (cmt)

+) $AN = AC$ (do tam giác $ANC$ đều)

Do đó \(\Delta ABN = \Delta AMC(c.g.c)\)

Suy ra $BN = CM$ (hai cạnh tương ứng).

Vậy cả A, B đều đúng.

Đáp án : D

Các bài tập cùng chuyên đề

Bài 1 :

Chọn câu sai.

Xem lời giải >>
Bài 2 :

Hai góc nhọn của tam giác vuông cân  bằng nhau và bằng

Xem lời giải >>
Bài 3 :

Cho tam giác $ABC$  cân tại $A.$  Phát biểu nào trong các phát biểu sau là sai:

Xem lời giải >>
Bài 4 :

Một tam giác cân có góc ở đỉnh bằng \({64^0}\) thì số đo góc ở đáy là:

Xem lời giải >>
Bài 5 :

Một tam giác cân có góc ở đáy bằng \({70^0}\) thì số đo góc ở đỉnh là:

Xem lời giải >>
Bài 6 :

Số tam giác cân trong hình vẽ dưới đây là:

Xem lời giải >>
Bài 7 :

Tính số đo \(x\) trên hình vẽ sau:

Xem lời giải >>
Bài 8 :

Cho tam giác $ABC$  cân tại đỉnh $A$ với \(\widehat A = {80^0}\). Trên hai cạnh $AB,AC$ lần lượt lấy hai điểm $D$  và $E$  sao cho $AD = AE.$ Phát biểu nào sau đây là sai?

Xem lời giải >>
Bài 9 :

Cho tam giác \(ABC\) có \(\widehat A = 90^\circ ;\,AB = AC\). Khi đó

Xem lời giải >>
Bài 10 :

Cho tam giác \(ABC\) có \(M\) là trung điểm của \(BC\) và \(AM = \dfrac{{BC}}{2}\). Số đo góc \(BAC\) là

Xem lời giải >>
Bài 11 :

Tam giác \(ABC\) có \(\widehat A = 40^\circ ;\,\widehat B - \widehat C = 20^\circ .\) Trên tia đối của tia \(AC\) lấy điểm \(E\) sao cho \(AE = AB.\) Tính số đo góc \(CBE.\)

Xem lời giải >>
Bài 12 :

Cho tam giác \(ABC\) có \(\widehat A = 120^\circ .\) Trên tia phân giác của góc \(A\) lấy điểm \(D\) sao cho \(AD = AB + AC.\) Khi đó tam giác \(BCD\) là tam giác gì?

Xem lời giải >>
Bài 13 :

Cho \(M\) thuộc đoạn thẳng \(AB.\) Trên cùng một nửa mặt phẳng bờ \(AB,\) vẽ các tam giác đều \(AMC,BMD.\) Gọi \(E;F\) theo thứ tự là trung điểm của \(AD;BC.\) Tam giác \(MEF\) là tam giác gì? Chọn câu trả lời đúng nhất.

Xem lời giải >>
Bài 14 :

Cho tam giác \(ABC\) vuông tại \(A\) có \(\widehat B = {30^0}.\) Khi đó:

Xem lời giải >>
Bài 15 :

Cho tam giác \(ABC\) cân tại \(A\) có \(\widehat A = {120^0},BC = 6cm.\) Đường vuông góc với \(AB\) tại \(A\) cắt \(BC\) ở \(D.\) Độ dài \(BD\) bằng:

Xem lời giải >>
Bài 16 :

Cho tam giác \(ABC\) cân tại \(A\) có: \(\widehat A = {100^0}, BC = a, AC = b.\) Về phía ngoài tam giác \(ABC\) vẽ tam giác \(ABD\) cân tại \(D\) có: \(\widehat {ADB} = {140^0}.\) Tính chu vi tam giác \(ABD\) theo \(a\) và \(b.\)

Xem lời giải >>
Bài 17 :

Cho tam giác \(ABC\) cân tại \(B,\,\widehat {BAC} = {80^0}.\) Lấy \(I\) là điểm nằm trong tam giác sao cho \(\widehat {IAC} = {10^0};\widehat {ICA} = {30^0}.\) Tính góc \(ABI.\)

Xem lời giải >>