Đề bài

Cho đoạn thẳng $AB$  và điểm $M$  nằm giữa $A$  và $B$$\;\left( {MA < MB} \right).$ Vẽ tia $Mx$  vuông góc với $AB,$  trên đó lấy hai điểm $C$  và $D$  sao cho $MA = MC,MD = MB.$ Tia $AC$ cắt $BD$ ở $E.$ Tính số đo \(\widehat {AEB}\)

  • A.

    \({30^0}\)         

  • B.

    \({45^0}\) 

  • C.

    \({60^0}\)   

  • D.

    \({90^0}\).

Phương pháp giải

Áp dụng tính chất tam giác vuông cân, tính chất đường cao của tam giác.

Lời giải của GV HocTot.Nam.Name.Vn

Vì $Mx \bot AB \Rightarrow \widehat {AMx} = {90^0}$  

Xét $\Delta AMC$ có $\left\{ \begin{array}{l}\widehat {AMC} = {90^0}\left( {cmt} \right)\\MA = MC\left( {gt} \right)\end{array} \right. $ $\Rightarrow \widehat {MAC} = \widehat {MCA} = {45^0}$ (tính chất tam giác vuông cân)

Do đó \(\widehat {DCE} = \widehat {MCA} = {45^0}\) (đối đỉnh)

Xét $\Delta BMD$ có: $\left\{ \begin{array}{l}\widehat {BMD} = {90^0}\left( {cmt} \right)\\MB = MD\left( {gt} \right)\end{array} \right. $ $\Rightarrow \widehat {MBD} = \widehat {MDB} = {45^0}$(tính chất tam giác vuông cân)

Xét $\Delta CDE$ có: \(\widehat {CDE} = \widehat {DCE} = {45^0} \) \(\Rightarrow \widehat {CDE} + \widehat {DCE} = {90^0} \Rightarrow \widehat {DEC} = {90^0}.\)

Lại có: \(\widehat {DEC} + \widehat {AEB} = {180^0}\) (kề bù) \( \Rightarrow \widehat {AEB} = {180^0} - \widehat {DEC} = {180^0} - {90^0} = {90^0}\) .

Đáp án : D

Các bài tập cùng chuyên đề

Bài 1 :

Gọi $O$ là giao điểm của ba đường trung trực trong \(\Delta ABC\). Khi đó $O$ là:

Xem lời giải >>
Bài 2 :

Nếu một tam giác có một đường trung tuyến đồng thời là đường trung trực thì tam giác đó là tam giác gì?

Xem lời giải >>
Bài 3 :

Cho \(\Delta ABC\) cân tại $A,$  có \(\widehat A = {40^0}\), đường trung trực của $AB$  cắt $BC$  ở $D.$ Tính \(\widehat {CAD}\).

Xem lời giải >>
Bài 4 :

Cho tam giác \(ABC\) trong đó \(\widehat A = 100^\circ \). Các đường trung trực của \(AB\) và \(AC\) cắt cạnh \(BC\) theo thứ tự ở \(E\) và \(F\) . Tính \(\widehat {EAF}.\)

Xem lời giải >>
Bài 5 :

Cho \(\Delta ABC\) nhọn, đường cao $AH.$  Lấy điểm $D$ sao cho $AB$  là trung trực của $HD.$  Lấy điểm $E$  sao cho $AC$  là trung trực  của $HE.$  Gọi $M$  là giao điểm của $DE$  với $AB,N$ là giao điểm của $DE$  với $AC.$  Chọn câu đúng.

Xem lời giải >>
Bài 6 :

Cho \(\Delta ABC\) vuông tại $A,$  có \(\widehat C = {30^0}\), đường trung trực của $BC$  cắt $AC$  tại $M.$ Em hãy chọn câu đúng:

Xem lời giải >>
Bài 7 :

Cho tam giác $ABC$  vuông tại $A,$ kẻ đường cao $AH.$  Trên cạnh $AC$  lấy điểm $K$  sao cho $AK = AH.$ Kẻ \(KD \bot AC\left( {D \in BC} \right)\). Chọn câu đúng.

Xem lời giải >>
Bài 8 :

Cho tam giác \(ABC\) cân tại \(A\) có \(AM\) là đường trung tuyến khi đó

Xem lời giải >>
Bài 9 :

Cho \(\Delta ABC\) cân tại $A,$  hai đường cao $BD$  và $CE$  cắt nhau tại $I.$  Tia $AI$ cắt $BC$  tại $M.$  Khi đó \(\Delta MED\) là tam giác gì?

Xem lời giải >>
Bài 10 :

Cho tam giác \(ABC\) nhọn có trực tâm \(H.\) Chọn câu đúng.

Xem lời giải >>