Nội dung từ Loigiaihay.Com
Tam giác \(ABC\) có \(C\left( { - 2; - 4} \right)\), trọng tâm \(G\left( {0;4} \right)\), trung điểm cạnh \(BC\) là \(M\left( {2;0} \right)\). Tọa độ \(A\) và \(B\) là:
\(A\left( {4;12} \right),\,B\left( {4;6} \right)\).
\(A\left( { - 4; - 12} \right),\,B\left( {6;4} \right)\).
\(A\left( { - 4;12} \right),\,B\left( {6;4} \right)\).
\(A\left( {4; - 12} \right),\,B\left( { - 6;4} \right)\).
Sử dụng các công thức trung điểm và trọng tâm tam giác:
+) Điểm \(I\) là trung điểm \(AB \Leftrightarrow \left\{ \begin{array}{l}{x_I} = \dfrac{{{x_A} + {x_B}}}{2}\\{y_I} = \dfrac{{{y_A} + {y_B}}}{2}\end{array} \right.\) .
+) Điểm \(G\) là trọng tâm tam giác \(ABC \Leftrightarrow \left\{ \begin{array}{l}{x_G} = \dfrac{{{x_A} + {x_B} + {x_C}}}{3}\\{y_G} = \dfrac{{{y_A} + {y_B} + {y_C}}}{3}\end{array} \right.\) .
Ta có: \(M\left( {2;0} \right)\) là trung điểm \(BC\) nên \(\left\{ \begin{array}{l}2 = \dfrac{{{x_B} + ( - 2)}}{2}\\0 = \dfrac{{{y_B} + ( - 4)}}{2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_B} = 6\\{y_B} = 4\end{array} \right. \Rightarrow B\left( {6;4} \right)\)
\(G\left( {0;4} \right)\)là trọng tâm tam giác \(ABC\) nên $\left\{ \begin{array}{l}0 = \dfrac{{{x_A} + 6 + ( - 2)}}{3}\\4 = \dfrac{{{y_A} + 4 + ( - 4)}}{3}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_A} = - 4\\{y_A} = 12\end{array} \right. \Rightarrow A\left( { - 4;12} \right)$
Đáp án : C
Các bài tập cùng chuyên đề
Cho \(\overrightarrow a = m\overrightarrow i + n\overrightarrow j \) thì tọa độ véc tơ \(\overrightarrow a \) là:
Cho \(\overrightarrow u = \left( { - 1;0} \right)\) thì:
Cho điểm M(-3;1), khi đó:
Cho điểm \(M\left( {2; - 4} \right)\), khi đó:
Trong mặt phẳng $Oxy$, cho $A\left( {{x_A};{y_A}} \right){\rm{,B}}\left( {{x_B};{y_B}} \right)$. Tọa độ trung điểm $I$ của đoạn thẳng $AB$ là:
Cho hai điểm $A\left( {1;0} \right)$ và $B\left( {0; - 2} \right)$. Tọa độ trung điểm của đoạn thẳng $AB$ là:
Trong mặt phẳng $Oxy$, cho $A\left( {{x_A};{y_A}} \right),{\rm{ }}B\left( {{x_B};{y_B}} \right) và {\rm{ }}C\left( {{x_C};{y_C}} \right)$. Tọa độ trọng tâm $G$ của tam giác $ABC$ là:
Cho tam giác $ABC$ có trọng tâm là gốc tọa độ $O$, hai đỉnh $A$ và $B$ có tọa độ là $A\left( { - 2;2} \right)$;$B\left( {3;5} \right)$. Tọa độ của đỉnh $C$ là:
Trong mặt phẳng $Oxy$, cho $B\left( {5; - 4} \right),C\left( {3;7} \right)$. Tọa độ của điểm $E$ đối xứng với $C$ qua $B$ là
Trong mặt phẳng $Oxy$, gọi $B',B''$ và $B'''$ lần lượt là điểm đối xứng của $B\left( { - 2;7} \right)$ qua trục $Ox$,$Oy$ và qua gốc tọa độ $O$. Tọa độ của các điểm $B',\,B''$ và $B'''$ là:
Cho \(K\left( {1; - 3} \right)\). Điểm \(A \in Ox,B \in Oy\) sao cho \(A\) là trung điểm \(KB\). Tọa độ điểm \(B\) là:
Trong mặt phẳng tọa độ \(Oxy\), cho tam giác \(MNP\) có \(M\left( {1; - 1} \right),\,N\left( {5; - 3} \right)\) và \(P\) thuộc trục \(Oy\),trọng tâm \(G\) của tam giác nằm trên trục \(Ox\).Toạ độ của điểm \(P\) là