Nội dung từ Loigiaihay.Com
Phương trình đường thẳng đi qua hai điểm cực trị của đồ thị hàm số $y = {x^3} - 3{x^2} + 1$ là:
$y = - 2x + 1$
$y = 2x - 1$
$y = - 2x - 1$
$y = 2x + 1$
Cách 1:
+) Tìm các điểm cực trị của đồ thị hàm số theo quy tắc 1 :
Quy tắc 1:
- Bước 1: Tìm tập xác định của hàm số.
- Bước 2: Tính $f'\left( x \right)$, tìm các điểm tại đó $f'\left( x \right) = 0$ hoặc không xác định.
- Bước 3: Lập bảng biến thiên và kết luận.
+ Tại các điểm mà đạo hàm đổi dấu từ âm sang dương thì đó là điểm cực tiểu của hàm số.
+ Tại các điểm mà đạo hàm đổi dấu từ dương sang âm thì đó là điểm cực đại của hàm số.
+) Phương trình chính tắc của đường thẳng đi qua 2 điểm $A\left( {{x_1};{y_1}} \right),B\left( {{x_2};{y_2}}\right)$ (với ${x_1} \ne {x_2};{y_1} \ne {y_2}$) là :$\dfrac{{x - {x_1}}}{{{x_2} - {x_1}}} = \dfrac{{y - {y_1}}}{{{y_2} - {y_1}}}$
Cách 2:
Muốn tìm phương trình đường thẳng đi qua hai điểm cực trị của hàm số ta lấy \(y\) chia cho \(y’\) và lấy phần dư.
Cách 3: Sử dụng MTCT cho hàm bậc 3 (Chỉ sử dụng khi đã được học chương số phức)
Bước 1: Tính y' và y''
Bước 2: Bấm máy và sử dụng chức năng CALC
Mode 2 và nhập: $y-\dfrac{y'.y''}{18a}$
Trong đó a là hệ số của $x^3$
Bấm tiếp: CALC + SHIFT+ "$i$" "="
Với $i$ là đơn vị ảo (số phức) trên máy tính.
Bước 3: Kết luận
Kết quả nhận được có dạng $ a+bi $ thì phương trình đường thẳng cần tìm là $y=bx+a$
Cách 1:
$y' = 3{x^2} - 6x$ ;
$y' = 0 \Leftrightarrow 3x\left( {x - 2} \right) = 0 \Leftrightarrow \left[ \begin{gathered}x = 0 \Rightarrow y = 1 \hfill \\x = 2 \Rightarrow y = - 3 \hfill \\ \end{gathered} \right.$
Từ đây suy ra hai điểm cực trị có tọa độ $A\left( {0,1} \right)$ và $B\left( {2, - 3} \right).$
Phương trình đường thẳng qua hai điểm $A, B$ là: $\dfrac{{x - 0}}{{2 - 0}} = \dfrac{{y - 1}}{{ - 3 - 1}}$ $\Leftrightarrow - 4x = 2\left( {y - 1} \right) \Leftrightarrow y = - 2x + 1.$
Cách 2:
Ta có $y' = 3{x^2} - 6x$
Khi đó ${x^3} - 3{x^2} + 1 $ $= \left( {3{x^2} - 6x} \right)\left( {\dfrac{1}{3}x - \dfrac{1}{3}} \right) - 2x + 1$
Vậy đường thẳng đi qua hai điểm cực trị của đồ thị hàm số là $y = - 2x + 1$
Cách 3:
Bước 1:
$y'=3x^2-6x$; $y''=6x-6$
Bước 2:
Bước 3: Ta được a=1 và b=-2
Vậy đường thẳng là: $y=-2x+1$
Đáp án : A
Các bài tập cùng chuyên đề
Cho hàm số $y = f\left( x \right)$ có đạo hàm trên $\left( {a;b} \right)$. Nếu $f'\left( x \right)$ đổi dấu từ âm sang dương qua điểm ${x_0}$ thuộc \((a;b)\) thì
Giả sử $y = f\left( x \right)$ có đạo hàm cấp hai trên $\left( {a;b} \right)$. Nếu $\left\{ \begin{gathered}f'\left( {{x_0}} \right) = 0 \hfill \\ f''\left( {{x_0}} \right) > 0 \hfill \\ \end{gathered} \right.$ thì
Nếu ${x_0}$ là điểm cực tiểu của hàm số thì $f\left( {{x_0}} \right)$ là:
Nếu ${x_0}$ là điểm cực đại của hàm số thì $\left( {{x_0};f\left( {{x_0}} \right)} \right)$ là:
Cho các phát biểu sau:
1. Hàm số $y = f\left( x \right)$ đạt cực đại tại ${x_0}$ khi và chỉ khi đạo hàm đổi dấu từ dương sang âm qua ${x_0}$.
2. Hàm số $y = f\left( x \right)$ đạt cực trị tại ${x_0}$ khi và chỉ khi ${x_0}$ là nghiệm của đạo hàm.
3. Nếu $f'\left( {{x_0}} \right) = 0$ và $f''\left( {{x_0}} \right) = 0$ thì ${x_0}$ không phải là cực trị của hàm số $y = f\left( x \right)$ đã cho.
4. Nếu $f'\left( {{x_0}} \right) = 0$ và $f''\left( {{x_o}} \right) > 0$ thì hàm số đạt cực đại tại ${x_0}$.
Các phát biểu đúng là:
Điều kiện để hàm số bậc ba không có cực trị là phương trình $y' = 0$ có:
Chọn phát biểu đúng:
Số điểm cực trị của đồ thị hàm số $y = \dfrac{{x - 1}}{{2 - x}}$ là:
Hàm số nào sau đây không có cực trị?
Hàm số $f\left( x \right) = 2\sin 2x - 3$ đạt cực tiểu tại:
Đồ thị hàm số nào sau đây có $3$ điểm cực trị?
Cho hàm số $y = f\left( x \right)$ có đạo hàm $f'\left( x \right) = \left( {x -1}\right)\left({{x^2}- 2} \right)\left( {{x^4} - 4} \right)$. Số điểm cực trị của hàm số $y = f\left( x \right)$ là:
Đồ thị hàm số $y = {x^3} - 3x + 2$ có $2$ điểm cực trị $A,\;B.$ Diện tích tam giác $OAB\;$ với $O(0;0)$ là gốc tọa độ bằng:
Cho hàm số $y = f\left( x \right)$ có bảng biến thiên trên khoảng $\left( {0;2} \right)$ như sau:
Khẳng định nào sau đây là khẳng định đúng:
Cho hàm số $y = f\left( x \right)$ có bảng biến thiên như sau:
Khẳng định nào sau đây là khẳng định sai:
Cho hàm số $y = f\left( x \right)$ có bảng biến thiên như sau. Khẳng định nào dưới đây là đúng?
Cho hàm số $y = f\left( x \right)$ có bảng biến thiên như hình bên dưới, chọn khẳng định sai:
Hàm số $y = {x^3} - 3x^2 + 4$ đạt cực tiểu tại:
Cho hàm số $y = \dfrac{{ - {x^2} + 3x + 6}}{{x + 2}}$, chọn kết luận đúng:
Cho hàm số bậc hai $y = f\left( x \right)$ có đồ thị như hình vẽ bên, một hàm số $g\left( x \right)$ xác định theo $f\left( x \right)$ có đạo hàm $g'\left( x \right) = f\left( x \right) + m$. Tìm tất cả các giá trị thực của tham số $m$ để hàm số $g\left( x \right)$ không có cực trị.