Bài 8 trang 94 Tài liệu dạy – học Toán 9 tập 2

Giải bài tập Cho đường tròn (O; r) có đường kính AB. Lấy trên cung AB hai điểm C, D sao cho các tia AC,

Đề bài

Cho đường tròn (O; r) có đường kính AB. Lấy trên cung AB hai điểm C, D sao cho các tia AC, BD cắt nhau tại điểm M ở ngoài đường tròn. Vẽ đường tròn (O’) qua M, C, D. Chứng minh MO’ vuông góc với AB.

Phương pháp giải - Xem chi tiết

+) Vẽ đường kính MI của đường tròn (O).

+) Chứng minh IC và BC cùng vuông góc với MC, suy ra B; I; C thẳng hàng, BC là đường cao của tam giác ABC.

+) Chứng minh tương tự A; I; D thẳng hàng, AD là đường cao của tam giác ABC.

+) Chứng minh I là trực tâm của tam giác ABC, từ đó suy ra điều phải chứng minh.

Lời giải chi tiết

 

Vẽ đường kính MI của đường tròn (O).

Xét đường tròn (O) ta có ^MCI là góc nội tiếp chắn nửa đường tròn ^MCI=900ICMC

Xét đường tròn (O) ta có ^ACB là góc nội tiếp chắn nửa đườn tròn ^ACB=900BCAChay BCMC.

Theo tiên đề Ơ-lít ta có B; I; C thẳng hàng, BC là đường cao của tam giác ABC.

Chứng minh hoàn toàn tương tự ta có A; I; D thẳng hàng, AD là đường cao của tam giác ABC.

BCAD=II là trực tâm của tam giác ABC MIAB.

OMIMOAB.

Vậy MOAB (đpcm).

 HocTot.Nam.Name.Vn

Tham Gia Group Dành Cho Lớp 9 - Ôn Thi Vào Lớp 10 Miễn Phí

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

close