Bài 59 sách giải tích 12 nâng cao trang 117

Tính giá trị gần đúng đạo hàm của mỗi hàm số sau tại điểm đã cho (chính xác đến hàng phần trăm):

Lựa chọn câu để xem lời giải nhanh hơn

Tính giá trị gần đúng đạo hàm của mỗi hàm số sau tại điểm đã cho (chính xác đến hàng phần trăm):

LG a

\(y = {\log _3}\left( {\sin x} \right)\) tại \(x = {\pi  \over 4}\,;\) 

Phương pháp giải:

Sử dụng công thức \(\left( {{{\log }_a}u} \right)' = \frac{{u'}}{{u\ln a}}\)

Lời giải chi tiết:

\(y' = \frac{{\left( {\sin x} \right)'}}{{\sin x\ln 3}} = \frac{{\cos x}}{{\sin x\ln 3}}\)

\( = {{\cos x} \over {\sin x}}.{1 \over {\ln 3}} = {{\cot x} \over {\ln 3}}\)

\(y'\left( {{\pi  \over 4}} \right)  = \frac{{\cot \frac{\pi }{4}}}{{\ln 3}} = \frac{1}{{\ln 3}}\approx 0,91\)

LG b

\(y = {{{2^x}} \over {{x^2}}}\) tại \(x = 1\)

Phương pháp giải:

Sử dụng công thức đạo hàm của một thương \(\left( {\frac{u}{v}} \right)' = \frac{{u'v - uv'}}{{{v^2}}}\)

Công thức đạo hàm hàm mũ \(\left( {{a^u}} \right)' = u'{a^u}\ln a\)

Lời giải chi tiết:

\(\begin{array}{l}
y' = \left( {\frac{{{2^x}}}{{{x^2}}}} \right)' = \frac{{\left( {{2^x}} \right)'{x^2} - {2^x}.\left( {{x^2}} \right)'}}{{{{\left( {{x^2}} \right)}^2}}}\\
= \frac{{{2^x}\ln 2.{x^2} - {2^x}.2x}}{{{x^4}}}\\
= \frac{{x{{.2}^x}\left( {x\ln 2 - 2} \right)}}{{{x^4}}}\\
= \frac{{{2^x}\left( {x\ln 2 - 2} \right)}}{{{x^3}}}\\
y'\left( 1 \right) = \frac{{{2^1}.\left( {1.\ln 2 - 2} \right)}}{{{1^3}}}\\
= 2\left( {\ln 2 - 2} \right) \approx - 2,61
\end{array}\)

HocTot.Nam.Name.Vn

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD - Click xem ngay) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

close