Bài 58 Trang 177 SGK Đại số và Giải tích 12 Nâng caocho hình phẳng A được giới hạn bởi đường cong có phương trình và các đường thẳng Tính thể tích khối tròn xoay tạo thành khi quay A quanh trục hoành. Đề bài Cho hình phẳng A được giới hạn bởi đường cong có phương trình \(y = {x^{{1 \over 2}}}{e^{{x \over 2}}}\) và các đường thẳng \(x = 1,x = 2,y = 0.\) Tính thể tích khối tròn xoay tạo thành khi quay A quanh trục hoành. Phương pháp giải - Xem chi tiết Sử dụng công thức tính thể tích \(V = \pi \int\limits_a^b {{f^2}\left( x \right)dx} \) Lời giải chi tiết Thể tích cần tìm là: \(V = \pi \int\limits_1^2 {{{\left( {{x^{\frac{1}{2}}}{e^{\frac{x}{2}}}} \right)}^2}dx} = \pi \int\limits_1^2 {x.{e^x}} dx\) Đặt \(\left\{ \matrix{ Do đó \(V = \pi \left( {\left. {x{e^x}} \right|_1^2 - \int\limits_1^2 {{e^x}dx} } \right) \) \(= \pi \left( {2{e^2} - e - {e^2} + e} \right) = \pi {e^2}\) HocTot.Nam.Name.Vn
|