Bài 4.5 trang 77 SGK Toán 11 tập 1 - Kết nối tri thức

Cho hình chóp tứ giác S.ABCD và lấy một điểm E thuộc cạnh SA của hình chóp (E khác S, A).Trong mặt phẳng (ABCD) vẽ một đường thằng d cắt các cạnh CB, CD lần lượt tại M, N và cắt các tia AB, AD lần lượt tại P, Q.

Đề bài

Cho hình chóp tứ giác S.ABCD và lấy một điểm E thuộc cạnh SA của hình chóp (E khác S, A).Trong mặt phẳng (ABCD) vẽ một đường thằng d cắt các cạnh CB, CD lần lượt tại M, N và cắt các tia AB, AD lần lượt tại P, Q.

a) Xác định giao điểm của mp (E,d) với các cạnh SB, SD của hình chóp.

b) Xác định giao tuyến của mp (E,d) với các mặt của hình chóp.

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Để xác định giao điểm của một đường thẳng và một mặt phẳng, ta có thể tìm giao điểm của đường thẳng đó với một đường thẳng nằm trong mặt phẳng đã cho.

Để chứng minh giao tuyến của hai mặt phẳng, ta tìm hai điểm cùng thuộc cả hai mặt phẳng đó.

Lời giải chi tiết

a) 

- Giao điểm của mp(E,d) với cạnh SB

P thuộc AB suy ra P cũng thuộc mp(SAB)

Trên mp(SAB), gọi giao điểm của EP SB I

P thuộc đường thẳng d suy ra P cũng nằm trên mp(E,d)

E, P đều nằm trên mp(D,d) suy ra EP nằm trên mp(E,d) suy ra I cũng nằm trên mp(E,d)

Vậy I là giao điểm của mp(E,d) SB

- Giao điểm của mp(E,d) với cạnh SD.

Q thuộc AD suy ra Q nằm trên mp(SAD)

Gọi giao điểm của EQ SD F

Q thuộc đường thẳng d suy ra Q cũng nằm trên mp(E,d)

E, Q đều nằm trên mp(E,d) suy ra EQ nằm trên mp(E,d) , suy ra F cũng nằm trên mp(E,d)

Vậy F là giao điểm của mp(E,d) SD.

b) Ta có EI cùng thuộc mp(SAB)mp(E,d) suy ra EI là tuyến điểm của hai mặt phẳng.

EF cùng thuộc mp(SAD)mp(E,d) suy ra EF  là giao tuyến của hai mặt phẳng

\(IM \subset mp\left( {SBC} \right),IM \subset mp\left( {E,d} \right)\) suy ra IM là giao tuyến của hai mp(SBC)mp(E,d).

\(FN \subset mp\left( {SCD} \right),FN \subset mp\left( {E,d} \right)\) suy ra FN là giao tuyến của mp(SCD)mp(E,d).

  • Bài 4.6 trang 77 SGK Toán 11 tập 1 - Kết nối tri thức

    Cho hình tứ diện ABCD. Trên các cạnh AC, BC, BD lần lượt lấy các điểm M, N, P sao cho AM = CM, BN = CN, BP = 2DP. a) Xác định giao tuyến của đường thẳng CD và mặt phẳng (MNP) b) Xác định giao tuyến của hai mặt phẳng (ACD) và (MNP).

  • Bài 4.7 trang 77 SGK Toán 11 tập 1 - Kết nối tri thức

    Tại các nhà hàng, khách sạn, nhân viên phụ vụ bàn thường xuyên phải bưng bê nhiều khay, đĩa đồ ăn khác nhau. Một trong những nguyên tắc nhân viên cần nhớ là khay phải được bưng bằng ít nhất 3 ngón tay. Hãy giải thích tại sao?

  • Bài 4.8 trang 77 SGK Toán 11 tập 1 - Kết nối tri thức

    Bàn cắt giấy là một dụng cụ được sử dụng thường xuyên ở các cửa hàng photo – copy. Bàn cắt giấy gồm hai phần chính: phần bàn hình chữ nhật có chia kích thước giấy và phần dao cắt có một đầu được cố định vào bàn. Hãy giải thích tại sao khi sử dụng bàn cắt giấy thì các đường cắt luôn là đường thẳng.

  • Bài 4.4 trang 77 SGK Toán 11 tập 1 - Kết nối tri thức

    Cho hình chóp tứ giác S.ABCD và M là một điểm thuộc cạnh SC (M khác S, C). Giả sử hai đường thẳng AB và CD cắt nhau tại N. Chứng minh rằng đường thẳng MN là giao tuyến của hai mặt phẳng (ABM) và (SCD).

  • Bài 4.3 trang 77 SGK Toán 11 tập 1 - Kết nối tri thức

    Cho mặt phẳng (P) và hai đường thẳng a, b nằm trong (P). Một đường thẳng c cắt hai đường thẳng a và b taij hai điểm phân biệt. Chứng minh rằng đường thẳng c nằm trong giao tuyến của hai mặt phẳng (ABM) và (SCD).

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close