Bài 4 trang 85 - Bài tập cuối chương 3 - SGK Toán 11 tập 1 - Chân trời sáng tạoHàm số (fleft( x right) = left{ {begin{array}{*{20}{c}}{{x^2} + 2{rm{x}} + m}&{khi,,x ge 2}3&{khi,,x < 2}end{array}} right.) liên tục tại (x = 2) khi: Tổng hợp đề thi học kì 1 lớp 11 tất cả các môn - Chân trời sáng tạo Toán - Văn - Anh - Lí - Hóa - Sinh Đề bài Hàm số \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{{x^2} + 2{\rm{x}} + m}&{khi\,\,x \ge 2}\\3&{khi\,\,x < 2}\end{array}} \right.\) liên tục tại \(x = 2\) khi: A. \(m = 3\). B. \(m = 5\). C. \(m = - 3\). D. \(m = - 5\). Phương pháp giải - Xem chi tiết Bước 1: Tính \(f\left( {{x_0}} \right)\). Bước 2: Tính \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right)\). Bước 3: Giải phương trình \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right)\) để tìm \(m\). Lời giải chi tiết Trên các khoảng \(\left( { - \infty ;2} \right)\) và \(\left( {2; + \infty } \right)\), \(f\left( x \right)\) là hàm đa thức nên liên tục trên từng khoảng \(\left( { - \infty ;2} \right)\) và \(\left( {2; + \infty } \right)\). Ta có: \(f\left( 2 \right) = {2^2} + 2.2 + m = m + 8\) \(\begin{array}{l}\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ + }} \left( {{x^2} + 2{\rm{x}} + m} \right) = {2^2} + 2.2 + m = m + 8\\\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} \left( 3 \right) = 3\end{array}\) Để hàm số \(y = f\left( x \right)\) liên tục liên tục tại \(x = 2\) thì \(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = f\left( 2 \right) \Leftrightarrow m + 8 = 3 \Leftrightarrow m = - 5\). Vậy với \(m = - 5\) thì hàm số \(y = f\left( x \right)\) liên tục tại \(x = 2\). Chọn D.
|