Bài 36 trang 10 SBT Hình học 12 Nâng caoGiải bài 36 trang 10 sách bài tập Hình học 12 Nâng cao. Khối chóp S.ABCD có SA vuông góc với đáy... Đề bài Khối chóp \(S.ABCD\) có \(SA \bot \left( {ABC} \right)\); đáy là tam giác ABC cân tại A, độ dài trung tuyến AD bằng a, cạnh bên SB tạo với đáy một góc \( \alpha \) và tạo với mặt \(\left( {SAD} \right)\) góc \(\beta \). Tính thể tích khối chóp. Lời giải chi tiết AB là hình chiếu của SB trên \(mp\left( {ABC} \right)\) nên \(\widehat {SBA} = \alpha \) Dễ thấy \(BD \bot \left( {SAD} \right)\) nên hình chiếu của SB trên \(mp\left( {SAD} \right)\) là SD \( \Rightarrow \) \(\widehat {BSD} = \beta \) Do SAB và SDB là các tam giác vuông nên ta có \(SB = {{BD} \over {\sin \beta }},SB = {{AB} \over {\cos \alpha }},\) suy ra \(\eqalign{ &{{A{B^2}} \over {{{\cos }^2}\alpha }} = {{B{D^2}} \over {{{\sin }^2}\beta }} = {{A{B^2} - B{D^2}} \over {{{\cos }^2}\alpha - {{\sin }^2}\beta }} \cr&= {{{a^2}} \over {{{\cos }^2}\alpha - {{\sin }^2}\beta }} \cr & \Rightarrow BD = {{a\sin \beta } \over {\sqrt {{{\cos }^2}\alpha - {{\sin }^2}\beta } }}, \cr} \) \(\eqalign{ & SD = BD\cot \beta = {{a\cos \beta } \over {\sqrt {{\rm{co}}{{\rm{s}}^2}\alpha - {{\sin }^2}\beta } }}, \cr & SA = \sqrt {S{D^2} - A{D^2}} = {{a\sin \alpha } \over {\sqrt {{\rm{co}}{{\rm{s}}^2}\alpha - {{\sin }^2}\beta } }}. \cr & \cr} \) Vậy : \(\eqalign{ & {V_{S.ABC}} = {1 \over 3}{S_{ABC}}.SA \cr & = {1 \over 3}.a.{{a\sin \beta } \over {\sqrt {{\rm{co}}{{\rm{s}}^2}\alpha - {{\sin }^2}\beta } }}.{{a\sin \alpha } \over {\sqrt {{\rm{co}}{{\rm{s}}^2}\alpha - {{\sin }^2}\beta } }} \cr & = {{{a^3}\sin \alpha .\sin \beta } \over {3\left( {{\rm{co}}{{\rm{s}}^2}\alpha - {{\sin }^2}\beta } \right)}}. \cr} \) HocTot.Nam.Name.Vn
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM; 70+ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
|