Bài 28 trang 103 SGK Hình học 12 Nâng cao

Xác định vị trí tương đối giữa các cặp đường thẳng d và d’ cho bởi phương trình:

Lựa chọn câu để xem lời giải nhanh hơn

Xác định vị trí tương đối giữa các cặp đường thẳng d và d’ cho bởi phương trình:

LG a

\(d:{{x - 1} \over 2} = y - 7 = {{z - 3} \over 4}\,;\,d':{{x - 3} \over 6} = {{y + 1} \over { - 2}} = {{z + 2} \over 1}\)

Phương pháp giải:

Kiểm tra tích \( \left[ {\overrightarrow u ;\overrightarrow u '} \right].\overrightarrow {MM'} \) so với 0.

Lời giải chi tiết:

Đường thẳng d đi qua M(1; 7; 3) và có vectơ chỉ phương \(\overrightarrow u  = \left( {2;1;4} \right)\).

Đường thẳng d’ đi qua \(M'\left( {3; - 1; - 2} \right)\) và có vectơ chỉ phương \(\overrightarrow u ' = \left( {6; - 2;1} \right)\).
Ta có \(\overrightarrow {MM'}  = \left( {2; - 8; - 5} \right)\) và \(\left[ {\overrightarrow u ;\overrightarrow u '} \right] = \left( {9;22; - 10} \right)\) \( \Rightarrow \left[ {\overrightarrow u ;\overrightarrow u '} \right].\overrightarrow {MM'}  =  - 108 \ne 0\).
Vậy d và d’ chéo nhau.

LG b

\(d:\left\{ \matrix{
x = t \hfill \cr 
y = - 3 - 4t \hfill \cr 
z = - 3 - 3t \hfill \cr} \right.\)

d’ là giao tuyến của hai mặt phẳng \(\left( \alpha  \right):x + y - z = 0,\) \(\left( {\alpha '} \right):2x - y + 2z = 0\).

Lời giải chi tiết:

Đường thẳng d đi qua \(M\left( {0; - 3; - 3} \right)\) và có vectơ chỉ phương \(\overrightarrow u  = \left( {1; - 4; - 3} \right)\)
Đường thẳng d’ có vectơ chỉ phương

d và d’ có cùng vectơ chỉ phương và \(M\left( {0; - 3; - 3} \right)\) không nằm trên d’ nên d và d’ song song.

Cách khác:

Thay x, y, z ở phương trình tham số của d vào phương trình (α) ta được:

t-3-4t+3+3t=0 <=> 0 = 0 (đúng với ∀t)

Vậy d ⊂ (α) (1)

Thay x, y, z ở phương trình tham số của d vào phương trình (α') ta được:

2t+3+4t-6-6t=0 <=> -3=0 (vô nghiệm)

Vậy d // α' (2)

Từ (1) và (2) suy ra: d // d’.

HocTot.Nam.Name.Vn

  • Bài 29 trang 103 SGK Hình học 12 Nâng cao

    Viết phương trình đường thẳng đi qua A và cắt cả hai đường thẳng sau:

  • Bài 30 trang 103 SGK Hình học 12 Nâng cao

    Viết phương trình đường thẳng song song với đường thẳng và cắt cả hai đường thẳng và , biết phương trình của và là:

  • Bài 31 trang 103 SGK Hình học 12 Nâng cao

    Cho hai đường thẳng và . a) Chứng tỏ rằng hai đường thẳng đó chéo nhau. b) Viết phương trình mặt phẳng đi qua gốc tọa độ O và song song với và . c) Tính khoảng cách giữa hai đường thẳng và . d) Viết phương trình đường vuông góc chung của hai đường thẳng đó.

  • Bài 32 trang 104 SGK Hình học 12 Nâng cao

    Cho đường thẳng d và mặt phẳng có phương trình: . a) Tìm góc giữa d và . b) Tìm tọa độ giao điểm của d và . c) Viết phương trình hình chiếu vuông góc của d trên .

  • Bài 33 trang 104 SGK Hình học 12 Nâng cao

    Cho đường thẳng và mp(P) có phương trình: a) Xác định tọa độ giao điểm A của và (P). b) Viết phương trình đường thẳng đi qua A, nằm trong (P) và vuông góc với .

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close