Bài 28 trang 103 SGK Hình học 12 Nâng caoXác định vị trí tương đối giữa các cặp đường thẳng d và d’ cho bởi phương trình:
Lựa chọn câu để xem lời giải nhanh hơn
Xác định vị trí tương đối giữa các cặp đường thẳng d và d’ cho bởi phương trình: LG a \(d:{{x - 1} \over 2} = y - 7 = {{z - 3} \over 4}\,;\,d':{{x - 3} \over 6} = {{y + 1} \over { - 2}} = {{z + 2} \over 1}\) Phương pháp giải: Kiểm tra tích \( \left[ {\overrightarrow u ;\overrightarrow u '} \right].\overrightarrow {MM'} \) so với 0. Lời giải chi tiết: Đường thẳng d đi qua M(1; 7; 3) và có vectơ chỉ phương \(\overrightarrow u = \left( {2;1;4} \right)\). Đường thẳng d’ đi qua \(M'\left( {3; - 1; - 2} \right)\) và có vectơ chỉ phương \(\overrightarrow u ' = \left( {6; - 2;1} \right)\). LG b \(d:\left\{ \matrix{ d’ là giao tuyến của hai mặt phẳng \(\left( \alpha \right):x + y - z = 0,\) \(\left( {\alpha '} \right):2x - y + 2z = 0\). Lời giải chi tiết: Đường thẳng d đi qua \(M\left( {0; - 3; - 3} \right)\) và có vectơ chỉ phương \(\overrightarrow u = \left( {1; - 4; - 3} \right)\) d và d’ có cùng vectơ chỉ phương và \(M\left( {0; - 3; - 3} \right)\) không nằm trên d’ nên d và d’ song song. Cách khác: Thay x, y, z ở phương trình tham số của d vào phương trình (α) ta được: t-3-4t+3+3t=0 <=> 0 = 0 (đúng với ∀t) Vậy d ⊂ (α) (1) Thay x, y, z ở phương trình tham số của d vào phương trình (α') ta được: 2t+3+4t-6-6t=0 <=> -3=0 (vô nghiệm) Vậy d // α' (2) Từ (1) và (2) suy ra: d // d’. HocTot.Nam.Name.Vn
|