Bài 25 trang 55 SGK Toán 9 tập 1Vẽ đồ thị của các hàm số sau trên cùng một mặt phẳng tọa độ: Đề bài a) Vẽ đồ thị của các hàm số sau trên cùng một mặt phẳng tọa độ: \(y = \dfrac{2}{3}x + 2\); \(y = - \dfrac{3}{2}x + 2\) b) Một đường thẳng song song với trục hoành \(Ox\), cắt trục tung \(Oy\) tại điểm có tung độ bằng \(1\), cắt các đường thẳng \(y = \dfrac{2}{3}x + 2\) và \(y = - \dfrac{3}{2}x + 2\) theo thứ tự tại hai điểm \(M\) và \(N\). Tìm tọa độ của hai điểm \(M\) và \(N\). Video hướng dẫn giải Phương pháp giải - Xem chi tiết a) Cách vẽ đồ thị hàm số \(y=ax+b,\ (a \ne 0)\): Đồ thị hàm số \(y=ax+b \, \, (a\neq 0)\) là đường thẳng: +) Cắt trục hoành tại điểm \(A(-\dfrac{b}{a}; \, 0).\) +) Cắt trục tung tại điểm \(B(0;b).\) Xác định tọa độ hai điểm \(A\) và \(B\) sau đó kẻ đường thẳng đi qua hai điểm đó ta được đồ thị hàm số \(y=ax+b \, \, (a\neq 0).\) b) +) Đường thẳng song song với trục \(Ox\) có dạng \(y=a\), đường thẳng song song với trục \(Oy\) có dạng \(x=b\). +) Hai đường thẳng \(y=ax+b,\ y=a'x+b'\) cắt nhau tại \(A\). Hoành độ điểm \(A\) là nghiệm của phương trình: \(ax+b=a'x+b\). Giải phương trình tìm \(x\). Thay \(x\) tìm được vào công thức hàm số trên tìm được tung độ điểm \(A\). Lời giải chi tiết a) Hàm số \(y = \dfrac{2}{3}x + 2\) Cho \(x= 0 \Rightarrow y = \dfrac{2}{3}. 0+ 2=0+2=2 \Rightarrow A(0; 2)\) Cho \(y= 0 \Rightarrow 0 = \dfrac{2}{3}. x+ 2 \Rightarrow x=-3 \Rightarrow B(-3; 0)\) Đường thẳng đi qua hai điểm \(A,\ B\) là đồ thị của hàm số \(y = \dfrac{2}{3}x + 2\). +) Hàm số \(y =- \dfrac{3}{2}x + 2\) Cho \(x= 0 \Rightarrow y = -\dfrac{3}{2}. 0+ 2=0+2=2 \Rightarrow A(0; 2)\) Cho \(y=0 \Rightarrow y = -\dfrac{3}{2}. x+ 2 \Rightarrow x= \dfrac{4}{3} \Rightarrow C {\left(\dfrac{4}{3}; 0 \right)}\) Đường thẳng đi qua hai điểm \(A,\ C\) là đồ thị của hàm số \(y = -\dfrac{3}{2}x + 2\). b) Đường thẳng song song với trục \(Ox\) cắt trục \(Oy\) tại điểm có tung độ \(1\) có dạng: \(y=1\). Vì \(M\) là giao của đường thẳng \(y=\dfrac{2}{3}x+2\) và \(y=1\) nên hoành độ của \(M\) là nghiệm của phương trình: \(\dfrac{2}{3}x+2=1\) \(\Leftrightarrow \dfrac{2}{3}x=1-2\) \(\Leftrightarrow \dfrac{2}{3}x=-1\) \(\Leftrightarrow x=-\dfrac{3}{2}\) Do đó tọa độ \(M\) là: \(M{\left( -\dfrac{3}{2}; 1 \right)}\). Vì \(N\) là giao của đường thẳng \(y=-\dfrac{3}{2}x+2\) và \(y=1\) nên hoành độ của \(N\) là nghiệm của phương trình: \(-\dfrac{3}{2}x+2=1\) \(\Leftrightarrow -\dfrac{3}{2}x=1-2\) \(\Leftrightarrow -\dfrac{3}{2}x=-1\) \(\Leftrightarrow x=\dfrac{2}{3}\) Do đó tọa độ \(N\) là: \(N{\left( \dfrac{2}{3}; 1 \right)}\). HocTot.Nam.Name.Vn
|