Bài 2.18 trang 55 SGK Toán 11 tập 1 - Kết nối tri thứcMột cấp số nhân có số hạng đầu bằng 5 và công bội bằng 2. Hỏi phải lấy tổng của bao nhiêu số hạng đầu của cấp số nhân này để có tổng bằng 5115? Tổng hợp đề thi học kì 1 lớp 11 tất cả các môn - Kết nối tri thức Toán - Văn - Anh - Lí - Hóa - Sinh Đề bài Một cấp số nhân có số hạng đầu bằng 5 và công bội bằng 2. Hỏi phải lấy tổng của bao nhiêu số hạng đầu của cấp số nhân này để có tổng bằng 5115? Video hướng dẫn giải Phương pháp giải - Xem chi tiết Gọi n là số các số hạng đầu tiên trong cấp số cộng. Dựa vào công thức tính tổng các số hạng trong cấp số cộng: \({S_n} = \frac{{{u_1}\left( {1 - {q^n}} \right)}}{{1 - q}}\) đế tính n. Lời giải chi tiết Ta có: \({S_n} = \frac{{5\left( {1 - {2^n}} \right)}}{{1 - 2}} = - 5 + 5 \times {2^n}\;\) \(\begin{array}{l}5115 = - 5 + {5.2^n}\\ \Leftrightarrow {2^n} = 1024 = 2.\\ \Rightarrow n = 10.\end{array}\) Vậy phải lấy tổng 10 số hạng đầu.
|