Bài 2 trang 99 SGK Toán 11 tập 1 - Chân trời sáng tạo

Cho hình chóp (S.ABCD) có đáy là hình bình hành. Gọi (M) là trung điểm của (SC).

Tổng hợp đề thi học kì 1 lớp 11 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Lí - Hóa - Sinh

Đề bài

Cho hình chóp \(S.ABCD\) có đáy là hình bình hành. Gọi \(M\) là trung điểm của \(SC\).

a) Tìm giao điểm \(I\) của đường thẳng \(AM\) và mặt phẳng \(\left( {SBD} \right)\). Chứng minh \(IA = 2IM\).

b) Tìm giao điểm \(E\) của đường thẳng \(S{\rm{D}}\) và mặt phẳng \(\left( {ABM} \right)\).

c) Gọi \(N\) là một điểm tuỳ ý trên cạnh \(AB\). Tìm giao điểm của đường thẳng \(MN\) và mặt phẳng \(\left( {SBD} \right)\).

Phương pháp giải - Xem chi tiết

‒ Để tìm giao điểm của đường thẳng và mặt phẳng, ta tìm giao điểm của đường thẳng đó với một đường thẳng trong mặt phẳng.

‒ Để chứng minh \(IA = 2IM\), ta dựa vào tính chất trọng tâm của tam giác.

Lời giải chi tiết

a) Gọi \(O\) là giao điểm của \(AC\) và \(BD\).

Trong mặt phẳng \((SAC)\), gọi \(I\) là giao điểm của \(AM\) và \(SO\). Ta có:

\(\left. \begin{array}{l}I \in SO \subset \left( {SB{\rm{D}}} \right)\\I \in AM\end{array} \right\} \Rightarrow I = AM \cap \left( {SB{\rm{D}}} \right)\)

Xét tam giác \(SAC\) có:

\(ABCD\) là hình bình hành \( \Rightarrow O\) là trung điểm của \(AC\) \( \Rightarrow SO\) là trung truyến của tam giác \(SAC\).

Theo đề bài ta có \(M\) là trung điểm của \(SC\) \( \Rightarrow AM\) là trung truyến của tam giác \(SAC\).

Mà \(I = SO \cap AM\)

\( \Rightarrow I\) là trọng tâm của tam giác SAC suy ra IA = 2IM.

b) Trong mặt phẳng \((SBD)\), gọi \(E\) là giao điểm của \(S{\rm{D}}\) và \(BI\). Ta có:

\(\left. \begin{array}{l}E \in BI \subset \left( {ABM} \right)\\E \in S{\rm{D}}\end{array} \right\} \Rightarrow E = S{\rm{D}} \cap \left( {ABM} \right)\)

c) Mặt phẳng (ABM) chứa BE, MN. Gọi \(J\) là giao điểm của \(MN\) và \(BE\). Ta có:

\(\left. \begin{array}{l}J \in BE \subset \left( {SB{\rm{D}}} \right)\\J \in MN\end{array} \right\} \Rightarrow J = MN \cap \left( {SB{\rm{D}}} \right)\)

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close