Bài 19 trang 41 SBT Hình học 10 Nâng cao

Giải bài tập Bài 19 trang 41 SBT Hình học 10 Nâng cao

Lựa chọn câu để xem lời giải nhanh hơn

Cho đa giác đều \(A_1A_2…A_n\) nội tiếp trong đường tròn \((O ; R)\) và một điểm \(M\) thay đổi trên đường tròn đó. Chứng minh rằng:

LG a

\(\cos \widehat {MO{A_1}} + \cos \widehat {MO{A_2}}\) \(+ ... + \cos \widehat {MO{A_n}} = 0;\)

Lời giải chi tiết:

Theo định nghĩa của tích vô hướng ta có ( với mỗi \(i \in \left\{ {1,2,...,n} \right\}\)):

\(\overrightarrow {OM} .\overrightarrow {O{A_i}}  = OM.O{A_i}.\cos \widehat {MO{A_i}}\)

\(= {R^2}\cos \widehat {MO{A_i}}.\)

Do đó

\(\cos \widehat {MO{A_1}} + \cos \widehat {MO{A_2}} \)\(+ ... + \cos \widehat {MO{A_n}} = \dfrac{1}{{{R^2}}}\overrightarrow {OM} .(\overrightarrow {O{A_1}}  + \overrightarrow {O{A_2}}  + ... + \overrightarrow {O{A_n}} ).\)

Theo bài 7( chương I) thì \(\overrightarrow {O{A_1}}  + \overrightarrow {O{A_2}}  + ... + \overrightarrow {O{A_n}}  = \overrightarrow 0 \), nên :

\(\cos \widehat {MO{A_1}} + \cos \widehat {MO{A_2}}\)\( + ... + \cos \widehat {MO{A_n}} = 0\).

LG b

\(MA_1^2 + MA_2^2 + ... + MA_n^2\) có giá trị không đổi.

Lời giải chi tiết:

Ta có

\(\begin{array}{l}MA_1^2 + MA_2^2 + ... + MA_n^2 \\= {\overrightarrow {M{A_1}} ^2} + {\overrightarrow {M{A_2}} ^2} + ... + {\overrightarrow {M{A_n}} ^2}\\= {(\overrightarrow {O{A_1}}  - \overrightarrow {OM} )^2} + {(\overrightarrow {O{A_2}}  - \overrightarrow {OM} )^2} + ... + {(\overrightarrow {O{A_n}}  - \overrightarrow {OM} )^2}   \\ = OA_1^2 + OA_2^2 + ... + OA_n^2 + nO{M^2} - 2(\overrightarrow {O{A_1}}  + \overrightarrow {O{A_2}}  + ... + \overrightarrow {O{A_n}} ).\overrightarrow {OM} \\= {R^2} + {R^2} + ... + {R^2} + n{R^2} - 0 = 2n{R^2}.\\\end{array}\)

HocTot.Nam.Name.Vn

2k8 Tham gia ngay group chia sẻ, trao đổi tài liệu học tập miễn phí

close