Bài 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 trang 16 SBT Hình học 12 Nâng cao

Giải bài 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 trang 16 sách bài tập Hình học 12 Nâng cao. Hình hộp đứng ABCD.A’B’C’D’ có đáy là một hình thoi với diện tích S1...

Lựa chọn câu để xem lời giải nhanh hơn

Chọn đáp án đúng:

Bài 16

Hình hộp đứng ABCD.A’B’C’D’ có đáy là một hình thoi với diện tích S1. Hai mặt chéo ACC’A’ và BDD’B’ có diện tích lần lượt bằng S2 và S3. Khi đó thể tích của hình hộp là

(A)S1S2S32;(B)23S1S2S3;(C)33S1S2S3;(D)S12S2S3.

Lời giải chi tiết:

Chọn (A).

Các tứ giác ACC’A’ và BDD’B’ đều là hình chữ nhật nên:

S2=AC.AA=AC.hS3=BD.BB=BD.hS2S3=AC.BD.h2=2S1h2h=S2S32S1VABCD.ABCD=S1h=S1.S2S32S1=S1S2S32

Quảng cáo

Lộ trình SUN 2026

Bài 17

Cho hình lập phương ABCD.A’B’C’D’  cạnh a, tâm O. Khi đó thể tích khối tứ diện AA’B’O là

(A)a38;(B)a312;(C)a39;(D)a323.

Lời giải chi tiết:

Chọn (B).

VAABO=VO.AAB=12VO.ABBA=12.16VABCD.ABCD=112a3

Bài 18

Cho biết thể tích của một hình hộp chữ nhật là V, đáy là hình vuông cạnh a. Khi đó diện tích toàn phần của hình hộp bằng

(A)2(Va+a2);(B)4Va+2a2;(C)2(Va2+a);(D)4(Va2+a).

Lời giải chi tiết:

Chọn (B).

Diện tích đáy Sd=a2

Chiều cao h=VSd=Va2

Diện tích xung quanh hình hộp: Sxq=4ah=4a.Va2=4Va

Diện tích toàn phần: Stp=Sxq+2Sd=4Va+2a2.

Bài 19

Cho một hình chóp tam giác có đường cao bằng 100cm và các cạnh đáy bằng 20cm, 21cm,29cm. Thể tích của hình chóp đó bằng

(A)6000cm3;(B)6213cm3;(C)7000cm3;(D)70002cm3

Lời giải chi tiết:

Chọn (C).

Nửa chu vi đáy: p=20+21+292=35

Diện tích đáy:

Sd=35(3520)(3521)(3529)=210V=13Sh=13.210.100=7000(cm3)

Bài 20

Cho hình chóp tam giác S.ABC với SASB,SBSC,SCSA,

SA=a,SB=b,SC=c. Thể tích của hình chóp bằng

(A)13abc;(B)16abc;(C)19abc;(D)23abc.

Lời giải chi tiết:

Chọn (B).

Ta có:

{SASBSASCSA(SBC)

VS.ABC=13SA.SSBC=13SA.12SB.SC=16abc

Bài 21

Một hình chóp tam giác đều có cạnh bên bằng b và chiều cao h. Khi đó, thể tích của hình chóp bằng

(A)34(b2h2)h;(B)312(b2h2)h;(C)34(b2h2)b;(D)38(b2h2)h;

Lời giải chi tiết:

Chọn (A).

Xét hình chóp tam giác đều S.ABC có chiều cao SG=h, cạnh bên SA=b.

Gọi M là trung điểm của BC ta có:

AG=SA2SG2=b2h2

Tam giác ABC đều có R=AG=b2h2 nên:

AB=2RsinC=2b2h2sin600 =3.b2h2

SABC=AB234

=3(b2h2)34

VS.ABC=13SABC.SG=13.3(b2h2)34.h=3(b2h2)4.h

Bài 22

Cho hình chóp tam giác S.ABC có SASB,SBSC,SCSA và AB=13cm, BC=15cm, CA=106cm. Thể tích của hình chóp bằng

(A)90cm3;(B)80cm3;(C)92cm3;(D)802cm3.

Lời giải chi tiết:

Chọn (A).

Các tam giác SAB, SBC, SCA đều vuông tại S nên ta có:

{SA2+SB2=AB2SB2+SC2=BC2SC2+SA2=AC2{SA2+SB2=169SB2+SC2=225SC2+SA2=106{SA2=25SB2=144SC2=81{SA=5SB=12SC=9VS.ABC=16SA.SB.SC=16.5.12.9=90

Bài 23

Cho hình chóp tứ giác đều có cạnh đáy bằng a và mặt bên tạo với mặt đáy một góc 450. Thể tích của hình chóp đó bằng

(A)a33;(B)a36;(C)2a33;(D)a39.

Lời giải chi tiết:

Chọn (B).

Gọi H là tâm đáy, M là trung điểm của BC.

Khi đó ^SMH=450 nên tam giác SHM vuông cân tại H.

Ta có: HM=12AB=a2

SH=HM=a2VS.ABCD=13SABCD.SH=13a2.a2=a36

Bài 24

Cho một hình chóp tứ giác đều có cạnh đáy bằng a và diện tích xung quanh gấp đôi diện tích đáy. Khi đó, thể tích của hình chóp bằng

(A)a336;(B)a333;(C)a332;(D)a3312.

Lời giải chi tiết:

Chọn (A).

Diện tích đáy SABCD=a2

Diện tích xung quanh Sxq=2SABCD=2a2

SSBC=14Sxq=14.2a2=a22SM=2SSBCBC=2.a22a2=aSH=SM2HM2=a2a24=a32VS.ABCD=13SABCD.SH=13.a2.a32=a336

Bài 25

Cho hình chóp tứ giác đều có cạnh đáy bằng a và cạnh bên tạo với mặt phẳng đáy một góc 600. Thể tích của hình chóp đó bằng

(A)a362;(B)a363;(C)a332;(D)a366.

Lời giải chi tiết:

Chọn (D).

Gọi O là tâm đáy, khi đó ^SAO=600.

ABCD là hình vuông cạnh a nên AO=12AC=a22

Tam giác SAO vuông tại O nên SO=AOtan^SAO =a22.tan600=a62

Thể tích khối chóp VS.ABCD=13SABCD.SO =13a2.a62=a366

Bài 26

Cho hình chóp tứ giác đều có cạnh đáy bằng a và cạnh bên bằng b. Khi đó thể tích của hình chóp bằng

(A)13a2b22a2;(B)16a2b22a2;(C)16a24b22a2;(D)23a22b2a2.

Lời giải chi tiết:

Chọn (C ).

ABCD là hình vuông cạnh a nên AO=12AC=a22

Tam giác SAO vuông tại O nên SO=SA2AO2  =b2a22=124b22a2

Thể tích khối chóp: VS.ABCD=13SABCD.SO =13a2.124b22a2 =16a24b22a2

Bài 27

Một hình chóp tam giác đều có cạnh đáy bằng a và các mặt bên tạo với mặt phẳng đáy một góc 600. Thể tích của hình chóp đó bằng

(A)a3324;(B)a338;(C)a334;(D)a326.

Lời giải chi tiết:

Chọn (A).

Gọi H là tâm đáy, M là trung điểm của BC.

Khi đó ^SMH=600.

Tam giác ABC đều cạnh a nên AM=a32

MH=13AM=13.a32=a36

Tam giác SMH vuông có ^SMH=600 nên

SH=MHtan600 =a36.3=a2

Thể tích khối chóp VS.ABC=13SABC.SH =13.a234.a2=a3324

Bài 28

Đường chéo của một hình hộp chữ nhật bằng d, góc giữa đường chéo và mặt đáy là α, góc nhọn giữa hai đường chéo của đáy bằng β. Thể tích của hình hộp đó bằng

(A)12d3cos2αsinαsinβ;(B)13d3cos2αsinαsinβ;(C)d3sin2αcosαsinβ;(D)12d3sin2αcosαsinβ.

Lời giải chi tiết:

Chọn (A).

Gọi O là tâm đáy ABCD, giả sử ^AOB nhọn thì ^AOB=β.

Ta có: AC=d,^ACA=α

Tam giác A’AC vuông tại A nên AA=ACsinα=dsinα

AC=ACcosα=dcosα

AO=BO=CO=DO =12AC=dcosα2

SABCD=4SAOB=4.12AO.BO.sin^AOB=2AO2sin^AOB=2.(dcosα2)2sinβ=d2cos2αsinβ2VABCD.ABCD=SABCD.AA=d2cos2αsinβ2.dsinα=12d3cos2αsinαsinβ

Bài 29

Cho lăng trụ tứ giác đều ABCD.A’B’C’D’  có cạnh đáy bằng a, đường chéo AC’ tạo với mặt bên (BCC’B’) một góc α(0<α<450). Khi đó, thể tích của khối lăng trụ bằng

(A)a3cot3α+1;(B)a3cot3α1;(C)a3cos2α;(D)a3tan2α1.

Lời giải chi tiết:

Chọn (B).

Ta có: AB(BCCB) nên (AC,(BCCB))=^ACB=α

Tam giác ABC vuông tại B nên BC=ABcotα=acotα

Tam giác BCC’ vuông tại B nên CC=BC2BC2 =(acotα)2a2=acot2α1

Thể tích: VABCD.ABCD=SABCD.CC =a2.acot2α1 =a3cot2α1.

Bài 30

Đáy của hình chóp S.ABCD là một hình vuông cạnh a. Cạnh bên SA vuông góc với mặt phẳng đáy và có độ dài bằng a. Thể tích khối tứ diện SBCD bằng

(A)a33;(B)a34;(C)a36;(D)a38.

Lời giải chi tiết:

Chọn (C).

VS.BCD=13SBCD.SA=13.12SABCD.SA=16a2.a=a36

Bài 31

Cho hình chóp S.ABCD có đáy là một hình vuông cạnh a. Cạnh bên SA vuông góc với mặt phẳng đáy, còn cạnh bên SC tạo với mặt phẳng (SAB) một góc 300. Thể tích của khối chóp đó bằng

(A)a333;(B)a324;(C)a322;(D)a323.

Lời giải chi tiết:

Chọn (D).

Ta có: {CBABCBSACB(SAB)

Do đó góc (SC,(SAB))=^CSB=300.

Tam giác SBC vuông tại B nên SB=BCtan300=a33=a3

Tam giác SAB vuông tại A nên SA=SB2AB2 =3a2a2=a2

Thể tích khối chóp VS.ABCD=13SABCD.SA =13a2.a2=a323

Bài 32

Cho hình chóp S.ABCD có đáy là một hình vuông cạnh a. Các mặt phẳng (SAB), (SAD) cùng vuông góc với mặt phẳng đáy , còn cạnh bên SC tạo với mặt phẳng đáy một góc 300. Thể tích của hình chóp đã cho bằng

(A)a369;(B)a363;(C)a364;(D)a339.

Lời giải chi tiết:

Chọn (A).

Ta có: {(SAB)(ABCD)(SAD)(ABCD)(SAB)(SAD)=SA

SA(ABCD)

góc giữa SC(ABCD) bằng ^SCA=300.

ABCD là hình vuông cạnh a nên AC=a2

Tam giác SAC vuông tại A nên:

SA=ACtan^SCA =a2.tan300=a63

Thể tích khối chóp VS.ABCD=13SABCD.SA =13a2.a63=a369

HocTot.Nam.Name.Vn

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

close