Bài 14 trang 11 SGK Toán 9 tập 1Phân tích thành nhân tử: Đề bài Phân tích thành nhân tử: a) \( x^{2}- 3\). b) \( x^{2}- 6\); c) \( x^{2}\) + \( 2\sqrt{3}x + 3\); d) \( x^{2}\) - \( 2\sqrt{5}x + 5\). Video hướng dẫn giải Phương pháp giải - Xem chi tiết +) Với \(a \ge 0\) ta luôn có: \(a={\left( {\sqrt a } \right)^2}\) +) Sử dụng các hằng đẳng thức: 1) \({\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}\) 2) \({\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}\) 3) \({a^2} - {b^2} = \left( {a - b} \right).\left( {a + b} \right)\) Lời giải chi tiết a) Ta có: \(x^{2} - 3=x^2-(\sqrt{3})^2\) \(=(x-\sqrt{3})(x+\sqrt{3})\) (Áp dụng hằng đẳng thức số 3) b) Ta có: \(x^{2}- 6=x^2-(\sqrt{6})^2\) \(=(x-\sqrt{6})(x+\sqrt{6})\) (Áp dụng hằng đẳng thức số 3) c) Ta có: \(x^2+2\sqrt{3}x + 3=x^2+2.x.\sqrt{3}+(\sqrt{3})^2\) \(=(x+\sqrt{3})^2\) (Áp dụng hằng đẳng thức số 1) d) Ta có: \(x^2-2\sqrt{5}x+5=x^2-2.x.\sqrt{5}+(\sqrt{5})^2\) \(=(x-\sqrt{5})^2\) (Áp dụng hằng đẳng thức số 2). HocTot.Nam.Name.Vn
|