Bài 11 trang 62 SGK Toán 11 tập 1 - Chân trời sáng tạo

Tìm số hạng đầu \({u_1}\) và công sai \(d\) của cấp số cộng \(\left( {{u_n}} \right)\), biết:

Tổng hợp đề thi học kì 1 lớp 11 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Lí - Hóa - Sinh

Đề bài

Tìm số hạng đầu \({u_1}\) và công sai \(d\) của cấp số cộng \(\left( {{u_n}} \right)\), biết:

a) \(\left\{ \begin{array}{l}5{u_1} + 10{u_5} = 0\\{S_4} = 14\end{array} \right.\);       

b) \(\left\{ \begin{array}{l}{u_7} + {u_{15}} = 60\\u_4^2 + u_{12}^2 = 1170\end{array} \right.\).

Phương pháp giải - Xem chi tiết

Sử dụng các công thức:

‒ Công thức số hạng tổng quát của cấp số cộng có số hạng đầu \({u_1}\) và công sai \(d\) thì số hạng tổng quát là: \({u_n} = {u_1} + \left( {n - 1} \right)d,n \ge 2\).

‒ Công thức tính tổng \(n\) số hạng đầu tiên của cấp số cộng có số hạng đầu \({u_1}\) và công sai \(d\) là: \({S_n} = \frac{{n\left[ {2{u_1} + \left( {n - 1} \right)d} \right]}}{2}\).

Sau đó đưa về giải hệ phương trình.

Lời giải chi tiết

a)

\(\begin{array}{l}\left\{ \begin{array}{l}5{u_1} + 10{u_5} = 0\\{S_4} = 14\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}5{u_1} + 10\left( {{u_1} + 4{\rm{d}}} \right) = 0\\\frac{{4\left( {2{u_1} + 3{\rm{d}}} \right)}}{2} = 14\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}5{u_1} + 10{u_1} + 40{\rm{d}} = 0\\2\left( {2{u_1} + 3{\rm{d}}} \right) = 14\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}15{u_1} + 40{\rm{d}} = 0\\2{u_1} + 3{\rm{d}} = 7\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 8\\d =  - 3\end{array} \right.\end{array}\)

Vậy cấp số cộng \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1} = 8\) và công sai \(d =  - 3\).

b)

\(\begin{array}{l}\left\{ \begin{array}{l}{u_7} + {u_{15}} = 60\\u_4^2 + u_{12}^2 = 1170\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left( {{u_1} + 6{\rm{d}}} \right) + \left( {{u_1} + 14{\rm{d}}} \right) = 60\\{\left( {{u_1} + 3{\rm{d}}} \right)^2} + {\left( {{u_1} + 11{\rm{d}}} \right)^2} = 1170\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} + 6{\rm{d}} + {u_1} + 14{\rm{d}} = 60\\{\left( {{u_1} + 3{\rm{d}}} \right)^2} + {\left( {{u_1} + 11{\rm{d}}} \right)^2} = 1170\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}2{u_1} + 20{\rm{d}} = 60\\{\left( {{u_1} + 3{\rm{d}}} \right)^2} + {\left( {{u_1} + 11{\rm{d}}} \right)^2} = 1170\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} + 10{\rm{d}} = 30\left( 1 \right)\\{\left( {{u_1} + 3{\rm{d}}} \right)^2} + {\left( {{u_1} + 11{\rm{d}}} \right)^2} = 1170\left( 2 \right)\end{array} \right.\end{array}\)

\(\left( 1 \right) \Leftrightarrow {u_1} = 30 - 10{\rm{d}}\) thế vào (2) ta được:

\(\begin{array}{l}{\left( {30 - 10{\rm{d}} + 3{\rm{d}}} \right)^2} + {\left( {30 - 10{\rm{d}} + 11{\rm{d}}} \right)^2} = 1170 \Leftrightarrow {\left( {30 - 7{\rm{d}}} \right)^2} + {\left( {30 + {\rm{d}}} \right)^2} = 1170\\ \Leftrightarrow 900 - 420{\rm{d}} + 49{{\rm{d}}^2} + 900 + 60{\rm{d}} + {d^2} = 1170 \Leftrightarrow 50{{\rm{d}}^2} - 360{\rm{d}} + 630 = 0\\ \Leftrightarrow 5{{\rm{d}}^2} - 36{\rm{d}} + 63 = 0 \Leftrightarrow \left[ \begin{array}{l}d = 3\\d = \frac{{21}}{5}\end{array} \right.\end{array}\)

Với \(d = 3 \Leftrightarrow {u_1} = 30 - 10.3 = 0\).

Với \(d = \frac{{21}}{5} \Leftrightarrow {u_1} = 30 - 10.\frac{{21}}{5} =  - 12\).

Vậy có hai cấp số cộng \(\left( {{u_n}} \right)\) thoả mãn:

‒ Cấp số cộng có số hạng đầu \({u_1} = 0\) và công sai \(d = 3\).

‒ Cấp số cộng có số hạng đầu \({u_1} =  - 12\) và công sai \(d = \frac{{21}}{5}\).

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close