Bài 11 trang 224 Sách bài tập Hình học lớp 12 Nâng cao.

Cho hình trụ có bán kính đáy bằng R,

Lựa chọn câu để xem lời giải nhanh hơn

Cho hình trụ có bán kính đáy bằng R, trục là OO'. Gọi MN là dây cung thay đổi của đường tròn tâm O sao cho MN = R. Kí hiệu N' là hình chiếu của N trên mặt phẳng chứa đường tròn tâm O'. Gọi I và J lần lượt là trung điểm của OO' và MN.

LG 1

Chứng minh rằng IJ là đường vuông góc chung của OO' và MN' và độ dài IJ không đổi.

Lời giải chi tiết:

Hai tam giác vuông OO'N' và O'OM có OO' chung và O'N' = OM nên chúng bằng nhau, từ đó IM = IN'. Mặt khác JM = JN' nên IJ MN'.

Cũng dễ thấy các tam giác OMN' và O'N'M bằng nhau, từ đó OJ = OJ'; mặt khác IO IO' nên IJ  OO'.

Vậy IJ là đường vuông góc chung của OO' và MN'.

Goi K là trung điểm của MN thì OK=R32 IJ=OK, tức là độ dài IJ không đổi.

LG 2

Chứng minh rằng mp(MNN') luôn tiếp xúc với một mặt trụ T cố định (tức giao của chúng là một đường sinh của T.

Lời giải chi tiết:

Từ IJ = R32 và IJ  OO'  suy ra điểm J thuộc mặt trụ có trục là OO' và bán kính mặt trụ bằng R32.

Mặt khác từ IJ  MN', IJ  OO' suy ra

IJ  mp(MNN'), tức là mp(MNN') tiếp xúc với mặt trụ cố định có trục là OO', bán kính R32.

HocTot.Nam.Name.Vn

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

close