Bài 2.31 trang 63 SBT hình học 12

Giải bài 2.31 trang 63 sách bài tập hình học 12. Cho hình lập phương ABCD.A’B’C’D’ cạnh a...

Đề bài

Cho hình lập phương ABCD.A’B’C’D’ cạnh a.

a) Tính diện tích xung quanh của hình trụ có đường tròn hai đáy ngoại tiếp các hình vuông ABC.D và A’B’C’D’.

b) Tính diện tích mặt cầu đi qua tất cả các đỉnh  của hình lập phương.

c) Tính diện tích xung quanh của hình nón tròn xoay nhận đường thẳng  AC’ làm trục và sinh ra bởi cạnh AB.

Phương pháp giải - Xem chi tiết

a) Diện tích xung quanh hình trụ: \({S_{xq}} = 2\pi rh \)

b) Tâm mặt cầu ngoại tiếp hình lập phương là giao điểm ba đường chéo chính.

Diện tích mặt cầu: \(S = 4\pi {R^2}\).

c) Diện tích xúng quanh hình nón: \(S = \pi rl\).

Lời giải chi tiết

a) Hình trụ có chiều cao h = a và bán kính đáy \(\displaystyle r = {{a\sqrt 2 } \over 2}\)

Do đó ta có: \(\displaystyle {S_{xq}} = 2\pi rh = \pi {a^2}\sqrt 2 \).

b) Gọi I là tâm của hình lập phương.

Tất cả các đỉnh của hình lập phương đều có khoảng cách đến I bằng \(\displaystyle {{a\sqrt 3 } \over 2}\) nên chúng nằm trên mặt cầu tâm I bán kính \(\displaystyle r = {{a\sqrt 3 } \over 2}\).

Ta có diện tích mặt cầu đó là \(\displaystyle S = 4\pi {r^2} = 3\pi {a^2}\).

c) Đường tròn đáy của hình nón tròn xoay đỉnh A tạo nên bởi cạnh AB là đường tròn ngoại tiếp tam giác đều A’BD, tam giác này có cạnh bằng \(\displaystyle a\sqrt 2 \) và có đường cao bằng \(\displaystyle {{a\sqrt 6 } \over 2}\)

Do đó đường tròn đáy hình nón có bán kính \(\displaystyle r' = {{a\sqrt 6 } \over 3}\).

Vậy hình nón tròn xoay này có đường sinh \(\displaystyle l=a\) và có diện tích xung quanh là \(\displaystyle {S_{xq}} = \pi r'l = \pi .{{a\sqrt 6 } \over 3}.a = {{\pi {a^2}\sqrt 6 } \over 3}\).

HocTot.Nam.Name.Vn

  • Bài 2.32 trang 63 SBT hình học 12

    Giải bài 2.32 trang 63 sách bài tập hình học 12. Hình trụ tròn xoay có bán kính đáy bằng r, có chiều cao bằng 2r và có trục là OO’.

  • Bài 2.30 trang 63 SBT hình học 12

    Giải bài 2.30 trang 63 sách bài tập hình học 12. Cho đường tròn tâm O bán kính r’. Xét hình chóp S.ABCD có SA vuông góc với mặt phẳng đáy, S và A cố định, SA = h cho trước và có đáy ABCD là một tứ giác tùy ý nội tiếp đường tròn đã cho, trong đó các đường chéo AC và BD vuông góc với nhau.

  • Bài 2.29 trang 63 SBT hình học 12

    Giải bài 2.29 trang 63 sách bài tập hình học 12. Cho tam giác vuông cân ABC có cạnh huyền AB = 2a. Trên đường thẳng d đi qua A và vuông góc với mặt phẳng (ABC), lấy một điểm S khác A, ta được tứ diện SABC.

  • Bài 2.28 trang 62 SBT hình học 12

    Giải bài 2.28 trang 62 sách bài tập hình học 12. Mặt phẳng (Q) song song với mặt phẳng (P) cắt ∆ và ∆' lần lượt tại M và M’. Gọi M1 là hình chiếu vuông góc của M lên mặt phẳng (P).

  • Bài 2.27 trang 62 SBT hình học 12

    Giải bài 2.27 trang 62 sách bài tập hình học 12. Trong mặt phẳng a, cho tam giác ABC vuông tại A có cạnh AC = a và có cạnh huyền BC = 2a. Cũng trong mặt phẳng đó cho nửa đường tròn đường kính AB cắt cạnh BC tại M.

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close