Giải bài 2 trang 25 sách bài tập toán 11 - Chân trời sáng tạo

Biết rằng \(x{\log _5}4 = 1\). Tìm giá trị của biểu thức \({4^x} + {4^{ - x}}\).

Tổng hợp đề thi học kì 2 lớp 11 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Lí - Hóa - Sinh

Đề bài

Biết rằng \(x{\log _5}4 = 1\). Tìm giá trị của biểu thức \({4^x} + {4^{ - x}}\).

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về phép tính lôgarit để tính: Với \(a > 0,a \ne 1,N > 0,N \ne 1\) ta có: \({\log _a}N = \frac{1}{{{{\log }_N}a}}\)

Quảng cáo

Lộ trình SUN 2026

Lời giải chi tiết

\(x{\log _5}4 = 1 \Rightarrow x = \frac{1}{{{{\log }_5}4}} = {\log _4}5\)

Do đó: \({4^x} + {4^{ - x}} = {4^{{{\log }_4}5}} + {4^{ - {{\log }_4}5}} = 5 + {5^{ - 1}} = 5\frac{1}{5}\)

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM; 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

close