Giải bài 1.6 trang 20 Chuyên đề học tập Toán 12 - Kết nối tri thứcTại một nhà máy sản xuất linh kiện điện tử, các linh kiện được sắp xếp vào từng hộp một cách độc lập, mỗi hộp 10 linh kiện. Hộp được xếp loại I nếu hộp đó có nhiều nhất một linh kiện không đạt tiêu chuẩn. Biết rằng xác suất để nhà máy sản xuất ra một linh kiện điện tử không đạt tiêu chuẩn là 0,01. Hỏi tỉ lệ những hộp linh kiện điện tử loại I là bao nhiêu? Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Kết nối tri thức Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa Đề bài Tại một nhà máy sản xuất linh kiện điện tử, các linh kiện được sắp xếp vào từng hộp một cách độc lập, mỗi hộp 10 linh kiện. Hộp được xếp loại I nếu hộp đó có nhiều nhất một linh kiện không đạt tiêu chuẩn. Biết rằng xác suất để nhà máy sản xuất ra một linh kiện điện tử không đạt tiêu chuẩn là 0,01. Hỏi tỉ lệ những hộp linh kiện điện tử loại I là bao nhiêu? Phương pháp giải - Xem chi tiết Từ các dữ kiện đề bài ta xác định được biến ngẫu nhiên X có phân bố nhị thức. Ta áp dụng chú ý về phân bố nhị thức sẽ tính được tỉ lệ đề bài. Lời giải chi tiết Gọi X là số linh kiện không đạt tiêu chuẩn thì X là một biến ngẫu nhiên có phân bố nhị thức với tham số n = 10, p = 0,01 tức là \(X \sim B\left( {10;0,01} \right)\) Hộp được xếp loại I nếu hộp đó có nhiều nhất một linh kiện không đạt tiêu chuẩn tức là \(X \le 1\). Theo chú ý về phân bố nhị thức ta có: \(P(X \le 1) = C_{10}^0.{(0,01)^0}.{(0,99)^{10}} + C_{10}^1.{(0,01)^1}.{(0,99)^9} \approx 0,996\) Vậy tỉ lệ những hộp linh kiện điện tử loại I là 99,6%.
|