Nội dung từ Loigiaihay.Com
Trong các khẳng định sau, số khẳng định đúng là:
a) Tập nghiệm của phương trình \(\dfrac{{{x^2} + 3x}}{x} = 0\) là \(\left\{ {0; - 3} \right\}\).
b) Tập nghiệm của phương trình \(\dfrac{{{x^2} - 4}}{{x - 2}} = 0\) là \(\left\{ { - 2} \right\}\).
c) Tập nghiệm của phương trình \(\dfrac{{x - 8}}{{x - 7}} = \dfrac{1}{{7 - x}} + 8\) là \(\left\{ 0 \right\}\).
\(1\)
\(2\)
\(0\)
\(3\)
+ Tìm ĐKXĐ của phương trình.
+ Phương trình \(\dfrac{{A\left( x \right)}}{{B\left( x \right)}} = 0 \) suy ra \( A\left( x \right) = 0\)
+ So sánh với điều kiện và kết luận.
* Xét phương trình \(\dfrac{{{x^2} + 3x}}{x} = 0\)
ĐK: \(x \ne 0\)
Ta có \(\dfrac{{{x^2} + 3x}}{x} = 0\)
Suy ra \( {x^2} + 3x = 0 \)
\(x\left( {x + 3} \right) = 0 \)
Suy ra \(x = 0\,\left( {KTM} \right)\) hoặc \(x + 3 = 0\)
Suy ra \(x = - 3\,\left( {TM} \right)\)
Vậy tập nghiệm của phương trình \(\dfrac{{{x^2} + 3x}}{x} = 0\) là \(\left\{ { - 3} \right\}\).
* Xét phương trình \(\dfrac{{{x^2} - 4}}{{x - 2}} = 0\)
ĐK: \(x \ne 2\)
Ta có \(\dfrac{{{x^2} - 4}}{{x - 2}} = 0\)
Suy ra \({x^2} - 4 = 0 \) hay \({x^2} = 4\) suy ra \(x = 2\left( {KTM} \right)\) hoặc \(x = - 2\left( {TM} \right)\)
Tập nghiệm của phương trình \(\dfrac{{{x^2} - 4}}{{x - 2}} = 0\) là \(\left\{ { - 2} \right\}\).
* Xét phương trình $\dfrac{{x - 8}}{{x - 7}} = \dfrac{{ - 1}}{{x - 7}} + 8$
ĐKXĐ: $x \ne 7$
$\dfrac{{x - 8}}{{x - 7}} = \dfrac{{ - 1}}{{x - 7}} + 8$
\(\dfrac{{x - 8}}{{x - 7}} = \dfrac{{ - 1}}{{x - 7}} + \dfrac{{8\left( {x - 7} \right)}}{{x - 7}}\)
Suy ra $ x - 8 = - 1 + 8.\left( {x - 7} \right)$
$ x - 8 = - 1 + 8x - 56$
$ x - 8x = - 1 - 56 + 8$
$ - 7x = - 49 $
$x = 7$ (không thỏa mãn ĐKXĐ ).
Vậy $S = \emptyset $
Do đó có \(1\) khẳng định b đúng.
Đáp án : A
Các bài tập cùng chuyên đề
Hãy chọn câu đúng. Điều kiện xác định của phương trình \(\dfrac{1}{{x - 2}} + 3 = \dfrac{{3 - x}}{{x - 2}}\) là
Hãy chọn câu đúng. Điều kiện xác định của phương trình \(\dfrac{x}{{x - 2}} - \dfrac{{2x}}{{{x^2} - 1}} = 0\) là
Phương trình \(\dfrac{{6x}}{{9 - {x^2}}} = \dfrac{x}{{x + 3}} - \dfrac{3}{{3 - x}}\) có nghiệm là
Số nghiệm của phương trình \(\dfrac{{x - 5}}{{x - 1}} + \dfrac{2}{{x - 3}} = 1\) là
Phương trình \(\dfrac{{3x - 5}}{{x - 1}} - \dfrac{{2x - 5}}{{x - 2}} = 1\) có số nghiệm là
Cho phương trình $\dfrac{1}{{x - 1}} - \dfrac{7}{{x - 2}} = \dfrac{1}{{\left( {x - 1} \right)\left( {2 - x} \right)}}$ . Bạn Long giải phương trình như sau:
Bước 1: ĐKXĐ $x \ne 1;\,x \ne 2$
Bước 2: $\dfrac{1}{{x - 1}} - \dfrac{7}{{x - 2}} = \dfrac{1}{{\left( {x - 1} \right)\left( {2 - x} \right)}}$
\(\dfrac{{x - 2}}{{\left( {x - 1} \right)\left( {x - 2} \right)}} - \dfrac{{7\left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {x - 2} \right)}} = \dfrac{{ -1}}{{\left( {x - 1} \right)\left( {x - 2} \right)}}\)
Bước 3: Suy ra
\(x - 2 - 7x + 7 = - 1 \\- 6x = - 6 \\x = 1\)
Vậy tập nghiệm của phương trình là \(S = \left\{ 1 \right\}\).
Chọn câu đúng.
Cho hai biểu thức : \(A = 1 + \dfrac{1}{{2 + x}}\) và \(B = \dfrac{{12}}{{{x^3} + 8}}\) . Tìm $x$ sao cho \(A = B\) .
Cho phương trình \(\left( 1 \right)\): \(\dfrac{1}{x} + \dfrac{2}{{x - 2}} = 0\) và phương trình \(\left( 2 \right)\): \(\dfrac{{x - 1}}{{x + 2}} - \dfrac{x}{{x - 2}} = \dfrac{{5x - 2}}{{4 - {x^2}}}\). Khẳng định nào sau đây là đúng.
Biết \({x_0}\) là nghiệm nhỏ nhất của phương trình
\(\dfrac{1}{{{x^2} + 4x + 3}} + \dfrac{1}{{{x^2} + 8x + 15}} + \dfrac{1}{{{x^2} + 12x + 35}} + \dfrac{1}{{{x^2} + 16x + 63}} = \dfrac{1}{5}.\) Chọn khẳng định đúng.
Số nghiệm của phương trình $\dfrac{{{x^2} + 3x + 2}}{{x + 3}} - \dfrac{{{x^2} + 2x + 1}}{{x - 1}} = \dfrac{{4x + 4}}{{{x^2} + 2x - 3}}$ là