Đề bài

Biết rằng phương trình \({\left( {{x^2} - 1} \right)^2} = 4x + 1\) có nghiệm lớn nhất là \({x_0}\) . Chọn hẳng định đúng.

  • A.

    \({x_0} = 3\)

  • B.

    \({x_0} < 2\)       

  • C.

    \({x_0} > 1\)     

  • D.

    \({x_0} < 0\)

Phương pháp giải

+ Thêm \(4{x^2}\) vào hai vế rồi đưa phương trình về dạng \({A^2} = {B^2} \) thì \(A = B\) hoặc \(A =  - B\)

Lời giải của GV HocTot.Nam.Name.Vn

Cộng \(4{x^2}\) vào hai vế ta được
\({\left( {{x^2} - 1} \right)^2} = 4x + 1 {x^4} - 2{x^2} + 1 = 4x + 1\\ {x^4} - 2{x^2} + 1 + 4{x^2} = 4{x^2} + 4x + 1\\ {x^4} + 2{x^2} + 1 = 4{x^2} + 4x + 1\\ {\left( {{x^2} + 1} \right)^2} = {\left( {2x + 1} \right)^2}\)

\(+)\,{x^2} + 1 = 2x + 1\\{x^2} - 2x = 0\\x\left( {x - 2} \right) = 0\)

Suy ra \(x = 0\) hoặc \(x = 2\)

\(+)\,{x^2} + 1 = - 2x – 1\\{x^2} + 2x + 2 = 0\\{\left( {x + 1} \right)^2} + 1 = 0\,\left( {VN} \right)\)

Vậy \(S = \left\{ {0;2} \right\}\) , nghiệm lớn nhất là \({x_0} = 2 > 1\) .

Đáp án : C

Các bài tập cùng chuyên đề

Bài 1 :

Phương trình: \(\left( {4 + 2x} \right)\left( {x - 1} \right) = 0\) có nghiệm là:

Xem lời giải >>
Bài 2 :

Các nghiệm của phương trình \(\left( {2 + 6x} \right)\left( { - {x^2} - 4} \right) = 0\) là:

Xem lời giải >>
Bài 3 :

Phương trình \(\left( {x - 1} \right)\left( {x - 2} \right)\left( {x - 3} \right) = 0\) có số nghiệm là:

Xem lời giải >>
Bài 4 :

Tổng các nghiệm của phương trình \(\left( {{x^2} - 4} \right)\left( {x + 6} \right)\left( {x - 8} \right) = 0\) là:

Xem lời giải >>
Bài 5 :

Chọn khẳng định đúng.

Xem lời giải >>
Bài 6 :

Tích các nghiệm của phương trình \({x^3} + 4{x^2} + x - 6 = 0\) là

Xem lời giải >>
Bài 7 :

Nghiệm lớn nhất của phương trình \(\left( {{x^2} - 1} \right)\left( {2x - 1} \right) = \left( {{x^2} - 1} \right)\left( {x + 3} \right)\) là

Xem lời giải >>
Bài 8 :

Nghiệm nhỏ nhất của phương trình \({\left( {2x + 1} \right)^2} = {\left( {x - 1} \right)^2}\) là

Xem lời giải >>
Bài 9 :

Tập nghiệm của phương trình \(\left( {{x^2} + x} \right)\left( {{x^2} + x + 1} \right) = 6\) là

Xem lời giải >>
Bài 10 :

Tìm m để phương trình \(\left( {2m - 5} \right)x - 2{m^2} + 8 = 43\) có nghiệm \(x =  - 7\).

Xem lời giải >>
Bài 11 :

Tập nghiệm của phương trình

\({\left( {5{x^2} - 2x + 10} \right)^2} = {\left( {3{x^2} + 10x - 8} \right)^2}\) là:  

Xem lời giải >>
Bài 12 :

Cho phương trình $\left( 1 \right):$ \(x\left( {{x^2} - 4x + 5} \right) = 0\) và phương trình \(\left( 2 \right):\) \(\left( {{x^2} - 1} \right)\left( {{x^2} + 4x + 5} \right) = 0\).

Chọn khẳng định đúng.

Xem lời giải >>