Nội dung từ Loigiaihay.Com
Hai vòi nước cùng chảy vào 1 bể không có nước thì sau 1,5h sẽ đầy bể. Nếu mở vòi 1 chảy trong 0,25h rồi khóa lại và mở vòi 2 chảy trong \(\dfrac{1}{3}\) h thì được \(\dfrac{1}{5}\) bể. Hỏi nếu vòi 2 chảy riêng thì bao lâu đầy bể?
$2,5h$
$2h$
$3h$
$4h$
Sử dụng cách giải bài toán bằng cách lập hệ phương trình.
Một số lưu ý khi giải bài toán làm chung công việc
- Có ba đại lượng tham gia là: Toàn bộ công việc , phần công việc làm được trong một đơn vị thời gian (năng suất) và thời gian.
- Nếu một đội làm xong công việc trong $x$ ngày thì một ngày đội dó làm được $\dfrac{1}{x}$ công việc.
- Xem toàn bộ công việc là $1$ (công việc).
Gọi thời gian vòi 1 chảy một mình đầy bể là x (h), thời gian vòi 2 chảy 1 mình đầy bể là y (h) (x; y > 1,5).
Mỗi giờ vòi 1 chảy được $\dfrac{1}{x}$ (bể), vòi 2 chảy được $\dfrac{1}{y}$ bể nên cả hai vòi chảy được $\dfrac{1}{x} + \dfrac{1}{y}$ bể
Hai vòi cùng chảy thì sau 1,5h sẽ đầy bể nên ta có phương trình: $\dfrac{1}{x} + \dfrac{1}{y} = \dfrac{2}{3}\begin{array}{*{20}{c}}{}&{(1)}\end{array}$
Nếu mở vòi 1 chảy trong 0,25h rồi khóa lại và mở vòi 2 chảy trong \(\dfrac{1}{3}\) h thì được \(\dfrac{1}{5}\) bể nên ta có phương trình: $\dfrac{{0,25}}{x} + \dfrac{1}{{3y}} = \dfrac{1}{5}\begin{array}{*{20}{c}}{}&{(2)}\end{array}$
Từ (1) và (2) ta có hệ phương trình: $\left\{ \begin{array}{l}\dfrac{1}{x} + \dfrac{1}{y} = \dfrac{2}{3}\\\dfrac{1}{{4x}} + \dfrac{1}{{3y}} = \dfrac{1}{5}\end{array} \right. $
Nhân cả hai vế của phương trình thứ nhất cho $\frac{1}{3}$, ta được $\left\{ \begin{array}{l}\dfrac{1}{{3x}} + \dfrac{1}{{3y}} = \dfrac{2}{9}\\\dfrac{1}{{4x}} + \dfrac{1}{{3y}} = \dfrac{1}{5}\end{array} \right. $
Trừ hai vế của phương trình thứ nhất cho phương trình thứ hai, ta được $\dfrac{1}{{12x}} = \dfrac{1}{{45}}$ suy ra $12x = 45$ hay $x = \dfrac{{15}}{4} = 3,75 (tm)$
Từ đó ta tính được $y = \dfrac{5}{2} = 2,5 (tm)$
Vậy thời gian vòi 2 chảy một mình đầy bể là 2,5 h.
Đáp án : A
Các bài tập cùng chuyên đề
Cho một số có hai chữ số . Nếu đổi chỗ hai chữ số của nó thì được một số lớn hơn số đã cho là $63$. Tổng của số đã cho và số mới tạo thành bằng $99$. Tổng các chữ số của số đó là
Cho một số có hai chữ số . Chữ số hàng chục lớn hơn chữ số hàng đơn vị là $5$. Nếu đổi chỗ hai chữ số cho nhau ta được một số bằng $\dfrac{3}{8}$ số ban đầu. Tìm tích các chữ số của số ban đầu.
Một ô tô đi quãng đường $AB$ với vận tốc $50\,\,km/h$ , rồi đi tiếp quãng đường $BC$ với vận tốc $45km/h.$ Biết quãng đường tổng cộng dài $165\,\,km$ và thời gian ô tô đi trên quãng đường $AB$ ít hơn thời gian đi trên quãng đường $BC$ là $30$ phút. Tính thời gian ô tô đi trên đoạn đường $AB$.
Một ôtô dự định đi từ \(A\) đến \(B\) trong một thời gian nhất định. Nếu xe chạy mỗi giờ nhanh hơn \(10\,km\) thì đến nơi sớm hơn dự định $3$ giờ, còn nếu xe chạy chậm lại mỗi giờ \(10\,km\) thì đến nơi chậm mất $5$ giờ. Tính vận tốc của xe lúc ban đầu.
Một canô chạy trên sông trong $7$ giờ, xuôi dòng \(108\,km\) và ngược dòng \(63\,km\) . Một lần khác cũng trong 7 giờ canô xuôi dòng \(81\,km\) và ngược dòng \(84\,km\) . Tính vận tốc nước chảy.
Hai người đi xe đạp xuất phát đồng thời từ hai thành phố cách nhau \(38\,km\) . Họ đi ngược chiều và gặp nhau sau $2$ giờ. Hỏi vận tốc của người thứ nhất, biết rằng đến khi gặp nhau, người thứ nhất đi được nhiều hơn người thứ hai \(2\,km\) ?
Một khách du lịch đi trên ôtô $4$ giờ, sau đó đi tiếp bằng tàu hỏa trong $7$ giờ được quãng đường dài \(640\,km\). Hỏi vận tốc của tàu hỏa , biết rằng mỗi giờ tàu hỏa đi nhanh hơn ôtô \(5\,km\) ?
Hai vòi nước cùng chảy vào một bể thì sau $4$ giờ $48$ phút bể đầy. Nếu vòi I chảy riêng trong $4$ giờ, vòi II chảy riêng trong $3$ giờ thì cả hai vòi chảy được $\dfrac{3}{4}$ bể. Tính thời gian vòi I một mình đầy bể.
Hai bạn $A$ và $B$ cùng làm chung một công việc thì hoàn thành sau $6$ ngày. Hỏi nếu $A$ làm một nửa công việc rồi nghỉ thì $B$ hoàn thành nốt công việc trong thời gian bao lâu? Biết rằng nếu làm một mình xong công việc thì $B$ làm lâu hơn $A$ là $9$ ngày.
Hai xí nghiệp theo kế hoạch phải làm tổng cộng $360$ dụng cụ. Trên thực tế, xí nghiệp $1$ vượt mức $12\% $ , xí nghiệp $2$ vượt mức $10\% $ , do đó cả hai xí nghiệp làm tổng cộng $400$ dụng cụ. Tính số dụng cụ xí nghiệp $2$ phải làm theo kế hoạch
Trong tháng đầu hai tổ sản xuất được $800$ sản phẩm. Sang tháng thứ $2$ , tổ $1$ sản xuất vượt mức $12\% $ , tổ $2$ giảm $10\% $ so với tháng đầu nên cả hai tổ làm được $786$ sản phẩm. Tính số sản phẩm tổ $1$ làm được trong tháng đầu.
Một tam giác có chiều cao bằng $\dfrac{3}{4}$ cạnh đáy. Nếu chiều cao tăng thêm $3$ $dm$ và cạnh đáy giảm đi $3$ $dm$ thì diện tích của nó tăng thêm $12$ $d{m^2}$ . Tính diện tích của tam giác ban đầu.
Một khu vườn hình chữ nhật có chu vi bằng $48$ $m.$ Nếu tăng chiều rộng lên bốn lần và tăng chiều dài lên ba lần thì chu vi của khu vườn sẽ là $162$ $m$. Tìm diện tích của khu vườn ban đầu.
Hai giá sách có $450$ cuốn. Nếu chuyển $50$ cuốn từ giá thứ nhất sang giá thứ hai thì số sách trên giá thứ hai bằng $\dfrac{4}{5}$ số sách ở giá thứ nhất. Tính số sách trên giá thứ hai.
Trên một cánh đồng cấy $60$ ha lúa giống mới và $40$ ha lúa giống cũ, thu hoạch được tất cả $460$ tấn thóc. Hỏi năng suất lúa mới trên $1$ ha là bao nhiêu, biết rằng $3$ ha trồng lúa mới thu hoạch được ít hơn $4$ ha trồng lúa cũ là $1$ tấn.
Trong một kì thi, hai trường $A,B$ có tổng cộng $350$ học sinh dự thi. Kết quả hai trường đó có $338$ học sinh trúng tuyển. Tính ra thì trường $A$ có \(97\% \) và trường $B$ có \(96 \% \) số học sinh trúng tuyển. Hỏi trường $B$ có bao nhiêu học sinh dự thi.
Một mảnh đất hình chữ nhật có chu vi bằng $42$ m. Đường chéo hình chữ nhật dài $15$ m. Tính độ dài chiều rộng mảnh đất hình chữ nhật.
Để tổ chức đi tham quan hướng nghiệp cho 435 người gồm học sinh khối lớp 9 và giáo viên phụ trách, nhà trường đã thuê 11 chiếc xe gồm hai loại: loại 30 chỗ ngồi và loại 45 chỗ ngồi (không kể tài xế). Hỏi nhà trường cần thuê bao nhiêu xe mỗi loại? Biết rằng không có xe nào còn trống chỗ.
Mẹ bạn Lan mua trái cây ở siêu thị gồm hai loại cam và nho. Biết rằng \(1kg\) cam có giá \(150\) nghìn đồng, \(1kg\) nho có giá \(200\) nghìn đồng. Mẹ bạn Lan mua \(4kg\) cả hai loại trái cây hết tất cả \(700\) nghìn đồng. Hỏi mẹ bạn Lan đã mua bao nhiêu kg cam, bao nhiêu kg nho?
Bạn N tiết kiệm bằng cách mỗi ngày bỏ tiền vào heo đất và chỉ dùng hai loại tiền giấy là tờ \(1000\) đồng và \(2000\) đồng. Hưởng ứng đợt vận động ủng hộ đồng bào bị lụt, bão nên N đập heo đất thu được \(160\,000\) đồng. Khi đó mẹ cho thêm bạn N số tờ tiền loại \(1000\) và số tờ tiền loại \(2000\) đồng lần lượt gấp 2 lần và 3 lần số tờ tiền cùng loại của bạn N có do tiết kiệm, vì vậy bạn N đã ủng hộ được tổng số tiền là \(560\,000\) đồng. Tính số tờ tiền mỗi loại của bạn N có do tiết kiệm.