Đề bài

Nếu \(\mathop {\lim }\limits_{x \to 2} f(x) = 5\) thì \(\mathop {\lim }\limits_{x \to 2} \left[ {2023 - 4f(x)} \right]\) bằng

  • A.

    2013

  • B.

    2003

  • C.

    1993

  • D.

    2015

Phương pháp giải

Sử dụng tính chất của giới hạn.

Lời giải của GV HocTot.Nam.Name.Vn

\(\mathop {\lim }\limits_{x \to 2} \left[ {2023 - 4f(x)} \right] = \mathop {\lim }\limits_{x \to 2} 2023 - 4\mathop {\lim }\limits_{x \to 2} f(x) = 2023 - 4.5 = 2003\).

Đáp án : B

Các bài tập cùng chuyên đề

Bài 1 :

Tính các giới hạn sau:

a) \(\mathop {\lim }\limits_{x \to  + \infty } \frac{{9x + 1}}{{3x - 4}};\)           

b) \(\mathop {\lim }\limits_{x \to  - \infty } \frac{{7x - 11}}{{2x + 3}};\)           

c) \(\mathop {\lim }\limits_{x \to  + \infty } \frac{{\sqrt {{x^2} + 1} }}{x};\)

d) \(\mathop {\lim }\limits_{x \to  - \infty } \frac{{\sqrt {{x^2} + 1} }}{x};\)              

e) \(\mathop {\lim }\limits_{x \to {6^ - }} \frac{1}{{x - 6}};\)            

g) \(\mathop {\lim }\limits_{x \to {7^ + }} \frac{1}{{x - 7}}.\)

Xem lời giải >>
Bài 2 :

Một công ty sản xuất máy tính đã xác định được rằng, tính trung bình một nhân viên có thể lắp ráp được \(N\left( t \right) = \frac{{50t}}{{t + 4}}\,\,\left( {t \ge 0} \right)\) bộ phận mỗi ngày sau t ngày đào tạo. Tính \(\mathop {\lim }\limits_{t \to  + \infty } N\left( t \right)\) và cho biết ý nghĩa của kết quả. 

Xem lời giải >>
Bài 3 :

Chi phí (đơn vị: nghìn đồng) để sản xuất x sản phẩm của một công ty được xác định bởi hàm số: C(x) = 50 000 + 105x

a) Tính chi phí trung bình \(\overline C \left( x \right)\) để sản xuất một sản phẩm. 

b) Tính \(\mathop {\lim }\limits_{x \to  + \infty } \overline C \left( x \right)\) và cho biết ý nghĩa của kết quả. 

Xem lời giải >>
Bài 4 :

Tính các giới hạn sau:

a) \(\mathop {\lim }\limits_{x \to  - \infty } \frac{{6x + 8}}{{5x - 2}}\);                     

b) \(\mathop {\lim }\limits_{x \to  + \infty } \frac{{6x + 8}}{{5x - 2}}\);                 

c) \(\mathop {\lim }\limits_{x \to  - \infty } \frac{{\sqrt {9{x^2} - x + 1} }}{{3x - 2}}\);

d) \(\mathop {\lim }\limits_{x \to  + \infty } \frac{{\sqrt {9{x^2} - x + 1} }}{{3x - 2}}\);            

e) \(\mathop {\lim }\limits_{x \to  - {2^ - }} \frac{{3{x^2} + 4}}{{2x + 4}}\);           

g) \(\mathop {\lim }\limits_{x \to  - {2^ + }} \frac{{3{x^2} + 4}}{{2x + 4}}\).

Xem lời giải >>
Bài 5 :

Một thấu kính hội tụ có tiêu cự là \(f\). Gọi \(d\) và \(d'\)  lần lượt là khoảng cách từ một vật thật AB và từ ảnh \(A'B'\) của nó tới quang tâm \(O\) của thấu kính như Hình 19. Công thức thấu kính là \(\frac{1}{d} + \frac{1}{{d'}} = \frac{1}{f}\).

a) Tìm biểu thức xác định hàm số \(d' = \varphi (d)\).     

b) Tìm \(\mathop {\lim }\limits_{d \to {f^ + }} \varphi (d),\mathop {\lim }\limits_{d \to {f^ - }} \varphi (d)\) và \(\mathop {\lim }\limits_{d \to f} \varphi (d)\). Giải thích ý nghĩa của các kết quả tìm được.

Xem lời giải >>
Bài 6 :

Tìm các giới hạn sau:

a) \(\mathop {\lim }\limits_{x \to  - {1^ + }} \frac{1}{{x + 1}}\);              

b) \(\mathop {\lim }\limits_{x \to  - \infty } \left( {1 - {x^2}} \right)\);

c) \(\mathop {\lim }\limits_{x \to {3^ - }} \frac{x}{{3 - x}}\).

Xem lời giải >>
Bài 7 :

Trong hồ có chứa 6000 lít nước ngọt. Người ta bơm nước biển có nồng độ muối là 30 gam/lít vào hồ với tốc độ 15 lít/phút. 

a) Chứng tỏ rằng nồng độ muối của nước trong hồ sau \(t\) phút kể từ khi bắt đầu bơm là \(C\left( t \right) = \frac{{30t}}{{400 + t}}\)(gam/lít).

b) Nồng độ muối trong hồ như thế nào nếu \(t \to  + \infty \).

Xem lời giải >>
Bài 8 :

Một thấu kính hội tụ có tiêu cự là \(f > 0\) không đổi. Gọi \(d\) và \(d'\) lần lượt là khoảng cách từ vật thật và ảnh của nó tới quang tâm \(O\) của thấu kính (Hình 5). Ta có công thức: \(\frac{1}{d} + \frac{1}{{d'}} = \frac{1}{f}\) hay \(d' = \frac{{df}}{{d - f}}\).

Xét hàm số \(g\left( d \right) = \frac{{df}}{{d - f}}\). Tìm các giới hạn sau đây và giải thích ý nghĩa.

a) \(\mathop {\lim }\limits_{d \to {f^ + }} g\left( d \right)\);        

b) \(\mathop {\lim }\limits_{d \to  + \infty } g\left( d \right)\).

Xem lời giải >>
Bài 9 :

Sử dụng định nghĩa, tìm các giới hạn sau:

a) \(\mathop {\lim }\limits_{x \to  - 1} \left( {{x^3} - 3x} \right)\);

b) \(\mathop {\lim }\limits_{x \to 2} \sqrt {2x + 5} \);

c) \(\mathop {\lim }\limits_{x \to  + \infty } \frac{{4 - x}}{{2x + 1}}\).

Xem lời giải >>
Bài 10 :

Tìm giá trị của các tham số a và b, biết rằng:

a) \(\mathop {\lim }\limits_{x \to 2} \frac{{ax + b}}{{x - 2}} = 5\);

b) \(\mathop {\lim }\limits_{x \to 1} \frac{{a\sqrt x  + b}}{{x - 1}} = 3\).

Xem lời giải >>
Bài 11 :

Trong mặt phẳng tọa độ Oxy, cho điểm \(M\left( {t,{t^2}} \right),t > 0\), nằm trên đường parabol \(y = {x^2}\). Đường trung trực của đoạn thẳng OM cắt trục tung tại N. Điểm N dần đến điểm nào khi M dần đến điểm O?

Xem lời giải >>
Bài 12 :

Biết \(\mathop {\lim }\limits_{x \to 1} \frac{{{x^2} - 3x + a}}{{x - 1}} = b\) với a và b là hai số thực. Giá trị của \(a + b\) bằng

A. 1.

B. 2.

C. 4.

D. 5.

Xem lời giải >>
Bài 13 :

Cho điểm M thay đổi trên parabol \(y = {x^2}\); H là hình chiếu vuông góc của M trên trục hoành. Gọi x là hoành độ của điểm H. Tìm \(\mathop {\lim }\limits_{x \to  + \infty } \left( {OM - MH} \right)\)

Xem lời giải >>
Bài 14 :

Giả sử \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = L\) và \(\mathop {\lim }\limits_{x \to {x_0}} g\left( x \right) = M\) \(\left( {L,M \in \mathbb{R}} \right)\). Phát biểu nào sau đây là SAI?

A. \(\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right) + g\left( x \right)} \right] = L + M\)  

B. \(\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right) - g\left( x \right)} \right] = L - M\)

C. \(\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right).g\left( x \right)} \right] = L.M\)                  

D. \(\mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right)}}{{g\left( x \right)}} = \frac{L}{M}\)

Xem lời giải >>
Bài 15 :

Quan sát đồ thị hàm số ở hình dưới đây và cho biết các giới hạn sau: \(\mathop {\lim }\limits_{x \to  + \infty } f\left( x \right)\), \(\mathop {\lim }\limits_{x \to  - \infty } f\left( x \right)\), \(\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} f\left( x \right)\), \(\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ - }} f\left( x \right)\).

 

Xem lời giải >>
Bài 16 :

Tính các giới hạn sau:

a) \(\mathop {\lim }\limits_{x \to  - 1} \left( { - 4{x^2} + 3x + 1} \right)\)                   

b) \(\mathop {\lim }\limits_{x \to  - 1} \frac{{ - 4x + 1}}{{{x^2} - x + 3}}\)

 c) \(\mathop {\lim }\limits_{x \to 2} \sqrt {3{x^2} + 5x + 4} \)                                   

d) \(\mathop {\lim }\limits_{x \to  - \infty } \frac{{ - 3 + \frac{4}{x}}}{{2{x^2} + 3}}\)

e) \(\mathop {\lim }\limits_{x \to {2^ + }} \frac{{ - 3}}{{x - 2}}\)                                         

g) \(\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} \frac{5}{{x + 2}}\)

Xem lời giải >>
Bài 17 :

Tính các giới hạn sau:

a) \(\mathop {\lim }\limits_{x \to  - \infty } \frac{{ - 5x + 2}}{{3x + 1}}\)                   

b) \(\mathop {\lim }\limits_{x \to  - \infty } \frac{{ - 2x + 3}}{{3{x^2} + 2x + 5}}\)

c) \(\mathop {\lim }\limits_{x \to  + \infty } \frac{{\sqrt {9{x^2} + 3} }}{{x + 1}}\)                                         

d) \(\mathop {\lim }\limits_{x \to  - \infty } \frac{{\sqrt {9{x^2} + 3} }}{{x + 1}}\)

e) \(\mathop {\lim }\limits_{x \to 1} \frac{{2{x^2} - 8x + 6}}{{{x^2} - 1}}\)               

g) \(\mathop {\lim }\limits_{x \to  - 3} \frac{{ - {x^2} + 2x + 15}}{{{x^2} + 4x + 3}}\)

Xem lời giải >>
Bài 18 :

Cho số thực \(a\) và hàm số \(f\left( x \right)\) thoả mãn \(\mathop {\lim }\limits_{x \to a} f\left( x \right) =  - \infty \). Chứng minh rằng \(\mathop {\lim }\limits_{x \to a} \frac{{f\left( x \right) - 3}}{{2f\left( x \right) + 1}} = \frac{1}{2}\).

Xem lời giải >>
Bài 19 :

Sau khi phát hiện một bệnh dịch, các chuyên gia y tế ước tính số người nhiễm bệnh kể từ ngày xuất hiện bệnh nhân đầu tiên biến đổi theo một hàm số thời gian (tính theo ngày) là \(g\left( t \right) = 45{t^2} - {t^3}\) (người). Tốc độ trung bình gia tăng người bệnh giữa hai thời điểm \({t_1}\), \({t_2}\) là \({V_{tb}} = \frac{{g\left( {{t_2}} \right) - g\left( {{t_1}} \right)}}{{{t_2} - {t_1}}}\). Tính \(\mathop {\lim }\limits_{t \to 10} \frac{{g\left( t \right) - g\left( {10} \right)}}{{t - 10}}\) và cho biết ý nghĩa kết quả tìm được.

Xem lời giải >>
Bài 20 :

Tính các giới hạn sau:

a) \(\mathop {\lim }\limits_{x \to  - \infty } \frac{{2 + \frac{4}{{3x}}}}{{{x^2} - 1}}\)                           

b) \(\mathop {\lim }\limits_{x \to {2^ + }} \frac{1}{{x - 2}}\)                  

c) \(\mathop {\lim }\limits_{x \to  - {3^ + }} \frac{{ - 5 + x}}{{x + 3}}\)

d) \(\mathop {\lim }\limits_{x \to  - \infty } \frac{{14x + 2}}{{ - 7x + 1}}\)                          

e) \(\mathop {\lim }\limits_{x \to  + \infty } \frac{{ - 2{x^2}}}{{3x + 5}}\)           

g) \(\mathop {\lim }\limits_{x \to  - \infty } \frac{{\sqrt {4{x^2} + 1} }}{{x + 2}}\)

h) \(\mathop {\lim }\limits_{x \to 1} \frac{{x - 1}}{{{x^2} - 1}}\)                     

i) \(\mathop {\lim }\limits_{x \to 2} \frac{{{x^2} - 5x + 6}}{{x - 2}}\)               

k) \(\mathop {\lim }\limits_{x \to 3} \frac{{ - {x^2} + 4x - 3}}{{{x^2} + 3x - 18}}\)

Xem lời giải >>
Bài 21 :

Tính các giới hạn sau:

a) \(\mathop {\lim }\limits_{x \to 2} \frac{{\sqrt {4x + 1}  - 3}}{{x - 2}};\)                         

b) \(\mathop {\lim }\limits_{x \to 1} \frac{{{x^3} + {x^2} + x - 3}}{{{x^3} - 1}};\)

c) \(\mathop {\lim }\limits_{x \to {2^ + }} \frac{{{x^2} - 5x + 6}}{{{{\left( {x - 2} \right)}^2}}};\)              

d) \(\mathop {\lim }\limits_{x \to {0^ - }} \frac{{{x^2} + x - 2}}{x}.\)

Xem lời giải >>
Bài 22 :

Cho \(f(x) = \frac{{{x^2} - x}}{{|x|}}\). Khi đó, giới hạn \(\mathop {\lim }\limits_{x \to 0} f(x)\) là

A. 2                     

B. - 1                   

C. 1                     

D. Không tồn tại

Xem lời giải >>
Bài 23 :

Tính các giới hạn sau:

a) \(\mathop {\lim }\limits_{x \to  - \infty } \frac{{x(x + 1)(2x - 1)}}{{5{x^3} + x + 7}}\);

b) \(\mathop {\lim }\limits_{x \to  - \infty } ({x^3} - 1)(2 - {x^5})\);

c) \(\mathop {\lim }\limits_{x \to  + \infty } \left( {\sqrt[3]{{{x^2} + {x^2} + 1}} - x} \right)\).

Xem lời giải >>
Bài 24 :

Tính \(\mathop {\lim }\limits_{x \to 0} x\sin \frac{1}{x}\).

Xem lời giải >>
Bài 25 :
Cho hàm số \(f\left( x \right)\) và \(g\left( x \right)\) thỏa mãn \(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = 14\) và \(\mathop {\lim }\limits_{x \to 0} g\left( x \right) = 7.\) Giá trị \(\mathop {\lim }\limits_{x \to 0} \frac{{g\left( x \right)}}{{f\left( x \right)}}\) bằng
Xem lời giải >>
Bài 26 :

Tính các giới hạn sau:

a) \(\mathop {\lim }\limits_{n \to + \infty } \left( {1 + n - {n^2}} \right).\)

b) \(\mathop {\lim }\limits_{x \to 2} \frac{{{x^3} - 8}}{{{x^2} - 4}}.\)

Xem lời giải >>
Bài 27 :

Tính:

a) \(\mathop {\lim }\limits_{n \to + \infty } \frac{{n - 1}}{{2n + 3}}\);       

b) \(\mathop {\lim }\limits_{x \to {1^ + }} \frac{{\sqrt {{x^3} - {x^2}} }}{{\sqrt {x - 1} + 1 - x}}\).

Xem lời giải >>
Bài 28 :

Cho hàm số $f\left( x \right)$ thỏa mãn $\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = 2.$ Giá trị $\mathop {\lim }\limits_{x \to + \infty } 3f\left( x \right)$ bằng

Xem lời giải >>
Bài 29 :

Tính các giới hạn sau:

a) \(\mathop {\lim }\limits_{n \to + \infty } \left( {1 + n - {n^2}} \right)\);

b) \(\mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {{x^2} + 4} - 2}}{x}\).

Xem lời giải >>
Bài 30 :

Cho $\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = - \infty $, trong bốn khẳng định sau đây, khẳng định nào sai?

Xem lời giải >>