Đề bài

Trục căn thức biểu thức \(\sqrt {\frac{2}{{5{a^3}}}} \) với \(a > 0\) được

  • A.

    \(\frac{{\sqrt {10a} }}{{5{a^2}}}\).

  • B.

    \(\frac{{\sqrt {10a} }}{{5{a^3}}}\).

  • C.

    \(\frac{{\sqrt 2 }}{{5{a^2}}}\).

  • D.

    \(\frac{2}{{5{a^2}}}\).

Phương pháp giải

Với những căn thức bậc hai mà biểu thức dưới dấu căn có mẫu, ta thường khử mẫu của biểu thức lấy căn (biến đổi căn thức bậc hai đó thành một biểu thức mà trong căn thức không còn mẫu).

Lời giải của GV HocTot.Nam.Name.Vn

\(\sqrt {\frac{2}{{5{a^3}}}}  = \sqrt {\frac{{2.5a}}{{25{a^4}}}}  = \sqrt {\frac{{10a}}{{{{\left( {5{a^2}} \right)}^2}}}}  = \frac{{\sqrt {10a} }}{{5{a^2}}}\).

Đáp án A.

Đáp án : A

Các bài tập cùng chuyên đề

Bài 1 :

Sau  khi rút gọn biểu thức $\dfrac{1}{{5 + 3\sqrt 2 }} + \dfrac{1}{{5 - 3\sqrt 2 }}$ ta được phân số tối giản $\dfrac{a}{b},\left( {a,b \in \mathbb{Z}} \right)$. Khi đó $2a$ có giá trị là:

Xem lời giải >>
Bài 2 :

Trục căn thức ở mẫu  biểu thức  \(\dfrac{{2a}}{{2 - \sqrt a }}\)với $a \ge 0;a \ne 4$ ta được

Xem lời giải >>
Bài 3 :

Trục căn thức ở mẫu  biểu thức  \(\dfrac{6}{{\sqrt x  + \sqrt {2y} }}\)với $x \ge 0;y \ge 0$ ta được

Xem lời giải >>
Bài 4 :

Tính giá trị biểu thức\(\left( {\dfrac{{\sqrt {14}  - \sqrt 7 }}{{1 - \sqrt 2 }} + \dfrac{{\sqrt {15}  - \sqrt 5 }}{{1 - \sqrt 3 }}} \right):\dfrac{1}{{\sqrt 7  - \sqrt 5 }}.\)

Xem lời giải >>
Bài 5 :

Giá trị biểu thức $\dfrac{3}{2}\sqrt 6  + 2\sqrt {\dfrac{2}{3}}  - 4\sqrt {\dfrac{3}{2}} $ là giá trị nào sau đây?

Xem lời giải >>
Bài 6 :

Giá trị của biểu thức \(\sqrt {\dfrac{3}{{20}}}  + \sqrt {\dfrac{1}{{60}}}  - 2\sqrt {\dfrac{1}{{15}}} \) là

Xem lời giải >>
Bài 7 :

Rút gọn biểu thức \(\dfrac{a}{{\sqrt 5  + 1}} + \dfrac{a}{{\sqrt 5  - 2}} - \dfrac{a}{{3 - \sqrt 5 }} - \sqrt 5 a\) ta được

Xem lời giải >>
Bài 8 :

Sau khi rút gọn biểu thức \(\dfrac{2}{{7 + 3\sqrt 5 }} + \dfrac{2}{{7 - 3\sqrt 5 }}\) là phân số tối giản \(\dfrac{a}{b},\left( {a,b \in \mathbb{Z}} \right)\). Khi đó \(a + b\) có giá trị là:

Xem lời giải >>
Bài 9 :

Trục căn thức ở mẫu biểu thức  \(\dfrac{3}{{6 + \sqrt {3a} }}\) với \(a \ge 0;a \ne 12\) ta được:

Xem lời giải >>
Bài 10 :

Trục căn thức ở mẫu  biểu thức \(\dfrac{4}{{3\sqrt x  + 2\sqrt y }}\) với \(x \ge 0;y \ge 0;x \ne \dfrac{4}{9}y\) ta được:

Xem lời giải >>
Bài 11 :

Tính giá trị biểu thức \(\left( {\dfrac{{10 + 2\sqrt {10} }}{{\sqrt 5  + \sqrt 2 }} + \dfrac{{\sqrt {30}  - \sqrt 6 }}{{\sqrt 5  - 1}}} \right):\dfrac{1}{{2\sqrt 5  - \sqrt 6 }}\)

Xem lời giải >>
Bài 12 :

Rút gọn biểu thức \(\dfrac{{4a}}{{\sqrt 7  - \sqrt 3 }} - \dfrac{{2a}}{{2 - \sqrt 2 }} - \dfrac{a}{{\sqrt 3  + \sqrt 2 }}\) ta được:

Xem lời giải >>
Bài 13 :

Trục căn thức ở mẫu của các biểu thức sau:

a) \(\frac{{ - 5\sqrt {{x^2} + 1} }}{{2\sqrt 3 }};\)

b) \(\frac{{{a^2} - 2a}}{{\sqrt a  + \sqrt 2 }}\left( {a \ge 0,a \ne 2} \right).\)

Xem lời giải >>
Bài 14 :

Trong thuyết tương đối, khối lượng m (kg) của một vật khi chuyển động với tốc độ v (m/s) được cho bởi công thức \(m = \frac{{{m_0}}}{{\sqrt {1 - \frac{{{v^2}}}{{{c^2}}}} }},\) trong đó \({m_0}\) (kg) là khối lượng của vật khi đứng yên, c (m/s) là tốc độ của ánh sáng trong chân không (Theo sách Vật lí đại cương, NXB Giáo dục Việt Nam, 2016) .

a) Viết lại công thức tính khối lượng m dưới dạng không có căn thức ở mẫu.

b) Tính khối lượng m theo \({m_0}\) (làm tròn đến chữ số thập phân thứ ba) khi vật chuyển động với tốc độ \(v = \frac{1}{{10}}c.\)

Xem lời giải >>
Bài 15 :

Khử mẫu trong dấu căn:

a) \(2a.\sqrt {\frac{3}{5}} ;\)

b) \( - 3x.\sqrt {\frac{5}{x}} \left( {x > 0} \right);\)

c) \( - \sqrt {\frac{{3a}}{b}} \left( {a \ge 0,b > 0} \right).\)

Xem lời giải >>
Bài 16 :

Rút gọn biểu thức \(A = \sqrt x \left( {\frac{1}{{\sqrt x  + 3}} - \frac{1}{{3 - \sqrt x }}} \right)\left( {x \ge 0,x \ne 9} \right).\)

Xem lời giải >>
Bài 17 :

Khử mẫu của các biểu thức lấy căn:

a) \(\sqrt {\frac{{11}}{6}} \)

b) \(a\sqrt {\frac{2}{{5a}}} \) với a > 0

c) \(4x\sqrt {\frac{3}{{4xy}}} \) với x > 0; y > 0

Xem lời giải >>
Bài 18 :

Trục căn thức ở mẫu các biểu thức sau:

a) \(\frac{{2\sqrt 5 }}{{\sqrt 2 }}\)

b) \(\frac{{10}}{{3\sqrt 5 }}\)

c) \( - \frac{3\sqrt a}{\sqrt {12 a}}\) với a > 0

Xem lời giải >>
Bài 19 :

Khử mẫu của biểu thức lấy căn:

a) \(\sqrt {\frac{4}{7}} \)

b) \(\sqrt {\frac{5}{{24}}} \)

c) \(\sqrt {\frac{2}{{3{a^3}}}} \) với a > 0

d) \(2ab\sqrt {\frac{{{a^2}}}{{2b}}} \) với a < 0, b > 0

Xem lời giải >>
Bài 20 :

Trục căn thức ở mẫu các biểu thức sau:

a) \(\frac{4}{{\sqrt {13}  - 3}}\)

b) \(\frac{{10}}{{5 + 2\sqrt 5 }}\)

c) \(\frac{{\sqrt a  - \sqrt b }}{{\sqrt a  + \sqrt b }}\) với a > 0; b > 0, \(a \ne b\).

Xem lời giải >>
Bài 21 :

Trục căn thức ở mẫu biểu thức \(\frac{{\sqrt 6  - \sqrt 3 }}{{\sqrt 3 a}}\) với a > 0, ta có kết quả

A. \(\frac{{\sqrt 2  - 1}}{{\sqrt a }}\)

B. \(\frac{{\left( {\sqrt 6  - \sqrt 3 } \right)\sqrt a }}{{3a}}\)

C. \(\frac{{\left( {\sqrt 2  - 1} \right)\sqrt a }}{a}\)

D. \(\sqrt {2a}  - \sqrt a \)

Xem lời giải >>
Bài 22 :

Trục căn thức ở mẫu các biểu thức sau:

a) \(\frac{{4 - 2\sqrt 6 }}{{\sqrt {48} }}\)

b) \(\frac{{3 - \sqrt 5 }}{{3 + \sqrt 5 }}\)

c) \(\frac{a}{{a - \sqrt a }}\) với a > 0, a \( \ne \)1

Xem lời giải >>
Bài 23 :

Xét phép biến đổi: \(\frac{5}{{\sqrt 3 }} = \frac{{5\sqrt 3 }}{{\left( {\sqrt 3 } \right)_{}^2}} = \frac{{5\sqrt 3 }}{3}\). Hãy xác định mẫu thức của mỗi biểu thức sau: \(\frac{5}{{\sqrt 3 }};\frac{{5\sqrt 3 }}{3}\).

Xem lời giải >>
Bài 24 :

Trục căn thức ở mẫu:

a. \(\frac{9}{{2\sqrt 3 }}\);

b. \(\frac{2}{{\sqrt a }}\) với \(a > 0\);

c. \(\frac{7}{{3 - \sqrt 2 }}\);

d. \(\frac{5}{{\sqrt x  + 3}}\) với \(x > 0;x \ne 9\);

e. \(\frac{{\sqrt 3  - \sqrt 2 }}{{\sqrt 3  + \sqrt 2 }}\);

g. \(\frac{1}{{\sqrt x  - \sqrt 3 }}\) với \(x > 0,x \ne 3\).

Xem lời giải >>
Bài 25 :

Trục căn thức ở mẫu:

a. \(\frac{{x_{}^2 + x}}{{\sqrt {x + 1} }}\) với \(x >  - 1\);

b. \(\frac{3}{{\sqrt x  - 2}}\) với \(x > 0;x \ne 4\);

c. \(\frac{{\sqrt 3  - \sqrt 5 }}{{\sqrt 3  + \sqrt 5 }}\);

d. \(\frac{{x_{}^2 - 9}}{{\sqrt x  - \sqrt 3 }}\) với \(x > 0;x \ne 3\).

Xem lời giải >>
Bài 26 :

Cho biểu thức: \(N = \frac{{x\sqrt x  + 8}}{{x - 4}} - \frac{{x + 4}}{{\sqrt x  - 2}}\) với \(x \ge 0,x \ne 4\).

a. Rút gọn biểu thức N.

b. Tính giá trị của biểu thức tại \(x = 9\).

Xem lời giải >>
Bài 27 :

Trục căn thức ở mẫu (với giả thiết các biểu thức đều có nghĩa):

a) \(\frac{6}{{\sqrt x }}\);

b) \(\frac{{\sqrt y }}{{1 + \sqrt y }}\);

c) \(\frac{{x\left( {x - y} \right)}}{{\sqrt x  - \sqrt y }}\).

Xem lời giải >>
Bài 28 :

Trục căn thức ở mẫu (với giả thiết các biểu thức đều có nghĩa):

a) \(\frac{{2\sqrt 6  + 1}}{{4\sqrt 6 }}\);

b) \(\frac{{\sqrt 5  - 3}}{{\sqrt 5  + 3}}\);

c) \(\frac{4}{{\sqrt {10}  - \sqrt 8 }}\);

d) \(\frac{{ab}}{{2\sqrt a  - \sqrt b }}\);

e) \(\frac{{3x}}{{4\sqrt x  - 1}}\);

g) \(\frac{{\sqrt m  + \sqrt n }}{{m\sqrt n }}\).

Xem lời giải >>
Bài 29 :

Cho \(\frac{2}{{\sqrt 3  + \sqrt 5 }} = \sqrt a  - \sqrt b \) với a, b là các số nguyên dương. Khi đó giá trị \(a - b\) bằng:

Xem lời giải >>
Bài 30 :

a) Trục căn thức ở mẫu của biểu thức \(\frac{{3 + \sqrt 2 }}{{2\sqrt 2  - 1}}\).

b) Tính giá trị biểu thức \(P = x\left( {{x^4} - 6{x^2} + 1} \right)\) tại \(x = \frac{{3 + \sqrt 2 }}{{2\sqrt 2  - 1}}\).

Xem lời giải >>