Nội dung từ Loigiaihay.Com
Cho ba đường thẳng \(a\), \(b\), \(c\). Trong các mệnh đề sau, mệnh đề nào đúng?
A. Nếu \(a\) và \(b\) cùng song song với \(c\) thì \(a\) song song với \(b\).
B. Nếu \(a\) và \(b\) cùng chéo nhau với \(c\) thì \(a\) và \(b\) chéo nhau.
C. Nếu \(a\) song song với \(b\), \(b\) và \(c\) chéo nhau thì \(a\) và \(c\) chéo nhau hoặc cắt nhau.
D. Nếu \(a\) và \(b\) cắt nhau, \(b\) và \(c\) cắt nhau thì \(a\) và \(c\) cắt nhau.
Kiểm tra từng đáp án. Với các đáp án sai, chỉ ra một ví dụ chứng minh nó sai.
Đáp án A sai. Xét trường hợp \(a\) song song với \(c\), \(a\) trùng với \(b\). Khi đó ta có \(a\) và \(b\) cùng song song với \(c\), nhưng \(a\) không song song với \(b\) (do \(a\) trùng với \(b\)).
Đáp án B sai. Xét hai mặt phẳng song song \(\left( P \right)\) và \(\left( Q \right)\). Chọn đường thẳng \(c \in \left( Q \right)\) bất kỳ. Trên mặt phẳng \(\left( P \right)\) chọn 2 đường thẳng \(a\) và \(b\) sao cho \(c\) không song song với hai đường thẳng trên. Khi đó ta có \(a\) và \(b\) cùng chéo nhau với \(c\), nhưng \(a\) và \(b\) không thể chéo nhau do chúng cùng nằm trong \(\left( P \right)\).
Đáp án D sai. Xét hai mặt phẳng song song \(\left( P \right)\) và \(\left( Q \right)\). Đường thẳng \(b\) cắt cả hai mặt phẳng lần lượt tại \(M\) và \(N\). Chọn đường thẳng \(a \subset \left( P \right)\) sao cho \(M \in a\); chọn đường thẳng \(c \in \left( Q \right)\) sao cho \(N \in c\). Khi đó hai đường thẳng \(a\) và \(b\) cắt nhau tại \(M\), hai đường thẳng \(b\) và \(c\) cắt nhau tại \(N\), nhưng \(a\) và \(c\) không cắt nhau.
Đáp án cần chọn là đáp án C.
Các bài tập cùng chuyên đề
Cho hai đường thẳng phân biệt a và b trong không gian. Có bao nhiêu vị trí tương đối giữa a và b?
Trong không gian, cho 3 đường thẳng a, b, c, biết a // b, a và c chéo nhau. Khi đó hai đường thẳng b và c
Một chiếc gậy được đặt một đầu dựa vào tường và đầu kia trên mặt sàn (H.4.20). Hỏi có thể đặt chiếc gậy đó song song với một trong các mép tường hay không?
Trong hình chóp tứ giác S.ACBD (H.4.19), chỉ ra những đường thẳng:
a) Chéo với đường thẳng SA
b) Chéo vói đường thẳng BC
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành (H.4.17)
a) Trong các đường thẳng AB, AC, CD, hai đường thẳng nào song song, hai đường thẳng nào cắt nhau?
b) Gọi M, N lần lượt là hai điểm thuộc hai cạnh SA, SB. Trong các đường thẳng SA, MN, AB có hai đường thẳng nào chéo nhau hay không?
Hãy tìm một số hình ảnh về hai đường thẳng song song, hai đường thẳng chéo nhau trong thực tiễn
Hình 4.13 minh hoạt bốn tuyến đường (được coi là thẳng) tại một nút giao ở Hà Nội.
Quan sát tình ảnh đó và trả lời các câu hỏi sau:
a) Hai tuyến đường nào giao nhau?
b) Hai tuyến đường nào không giao nhau?
c) Hai tuyến đường nào song song?
Cho hình chóp S.ABCD có đáy là hình bình hành. Trong các cặp đường thẳng sau, cặp đường thẳng nào cắt nhau, cặp đường thẳng nào song song, cặp đường thẳng nào chéo nhau?
a) AB và CD
b) AC và BD
c) SB và CD
Cho đường thẳng a song song với mặt phẳng (P). Mặt phẳng (Q) chứa đường thẳng a và cắt mặt phẳng (P) theo giao tuyến là đường thẳng b. Vị trí tương đối của hai đường thẳng a và b là:
A. chéo nhau
B. cắt nhau
C. song song
D. trùng nhau
Quan sát một phần căn phòng (Hình 35), hãy cho biết vị trí tương đối của các cặp đường thẳng a và b; a và c; b và c.
a) Hãy nêu các vị trí tương đối của hai đường thẳng trong mặt phẳng.
b) Quan sát hai đường thẳng a và b trong Hình 31a, 31b và cho biết các đường thẳng đó có cùng nằm trong một mặt phẳng không
Quan sát phòng học của lớp và nêu lên hình ảnh của hai đường thẳng song song, cắt nhau, chéo nhau.
Quan sát Hình 43 và cho biết vị trí tương đối của hai trong ba cột tuabin gió có trong hình.
Cho hai đường thẳng phân biệt a và b trong không gian. Có bao nhiêu vị trí tương đối giữa a và b?
A. 1
B. 2
C. 3
D. 4
Hãy chỉ ra các ví dụ về hai đường thẳng song song, cắt nhau và chéo nhau trong hình cầu sắt ở Hình 6.
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Xét vị trí tương đối của các cặp đường thẳng sau đây:
a) \(AB\) và \(CD\);
b) \(SA\) và \(SC\);
c) \(SA\) và \(BC\).
a) Nếu các trường hợp có thể xảy ra đối với hai đường thẳng \(a,b\) cùng nằm trong một mặt phẳng.
b) Cho tứ diện \(ABCD\). Hai đường thẳng \(AB\) và \(CD\) có cùng nằm trong bất kì mặt phẳng nào không?
Chỉ ra các đường thẳng song song trong mỗi hình sau. Tìm thêm một số ví dụ khác về các đường thẳng song song trong thực tế.
Trong không gian, cho ba đường thẳng \(a,b,c\) biết \(a\,{\rm{//}}\,b\) và \(a\), \(c\) chéo nhau. Khi đó hai đường thẳng \(b\) và \(c\) sẽ
Cho tứ diện \(ABCD\). Gọi \(I,J\) lần lượt là trọng tâm các tam giác \(ABC\) và \(ABD\). Khẳng định nào sau đây là đúng?
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Hỏi cạnh \(CD\) chéo với tất cả các cạnh nào của hình chóp?
Trong không gian, cho ba đường thẳng \(a,\,\,b,\,\,c\). Trong các mệnh đề sau mệnh đề nào đúng?
Trong các mệnh đề sau, mệnh đề nào đúng?
Hai đường thẳng chéo nhau khi và chỉ khi:
A. Hai đường thẳng cùng nằm trong một mặt phẳng và không có điểm chung.
B. Hai đường thẳng không có điểm chung
C. Hai đường thẳng không cùng nằm trong một mặt phẳng nào.
D. Hai đường thẳng cùng chéo nhau với đường thẳng thứ ba.
Quan sát hình căn phòng, hãy cho biết vị trí tương đối của các cặp đường thẳng \(a\) và \(b\), \(a\) và \(c\), \(b\) và \(c\).
Trong không gian cho hai đường thẳng cắt nhau a và b. Nếu c là một đường thẳng song song với a thì
A. c và b song song
B. c và b cắt nhau
C. c và b chéo nhau
D. c và b không song song với nhau
Trong không gian, hai đường thẳng không có điểm chung thì
A. cắt nhau.
B. chéo nhau hoặc song song.
C. chéo nhau.
D. song song.
Trong các mệnh đề sau, mệnh đề nào đúng?
Cho hình hộp $ABCD.EFGH$. Mệnh đề nào sau đây sai?
Cho hình hộp \(ABCD.A'B'C'D'\) có 6 mặt đều là hình vuông.
a) Tìm các đường thẳng đi qua hai đỉnh của hình lập phương và vuông góc với \(AC\).
b) Trong các đường thẳng tìm được ở câu a, tìm đường thẳng chéo với \(AC\).