Đề bài

Tọa độ tâm đối xứng của đồ thị hàm số \(y = \frac{{2x + 1}}{{x - 3}}\) là?

  • A.

    (3;2)

  • B.

    (-3;2)

  • C.

    (-1;3)

  • D.

    (1;-3)

Phương pháp giải

Tìm giao điểm hai đường tiệm cận của đồ thị hàm số.

Lời giải của GV HocTot.Nam.Name.Vn

Vậy tâm đối xứng của đồ thị có tọa độ (3;2).

Ta có \(\mathop {\lim }\limits_{x \to  \pm \infty } y = 2\) suy ra đuờng thẳng y = 2 là tiệm cận ngang của đồ thị hàm số.

Ta có \(\mathop {\lim }\limits_{x \to {3^ + }} y =  + \infty ;\) \(\mathop {\lim }\limits_{x \to {3^ - }} y =  - \infty \) suy ra đường thẳng x = 3 là tiệm cận đứng của đồ thị hàm số.

Vậy tâm đối xứng của đồ thị có tọa độ (3;2).

Đáp án : A

Các bài tập cùng chuyên đề

Bài 1 :

Giao điểm của hai đường tiệm cận của đồ thị hàm số nào dưới đây nằm trên đường thẳng $d:y = x$?

Xem lời giải >>
Bài 2 :

Giá trị của tham số $m$ để đường tiệm cận đứng của đồ thị hàm số $y = \dfrac{{2x + 1}}{{x + m}}$ đi qua điểm $M\left( {2;3} \right)$ là

Xem lời giải >>
Bài 3 :

Tìm các tiệm cận ngang và tiệm cận đứng của đồ thị hàm số \(y = f\left( x \right) = \frac{{2x + 1}}{{x - 4}}\).

Xem lời giải >>
Bài 4 :

Tìm các tiệm cận đứng và tiệm cận xiên của đồ thị hàm số \(y = f\left( x \right) = \frac{{{x^2} - 4x + 2}}{{1 - x}}\).

Xem lời giải >>
Bài 5 :

Hình 1.26 là đồ thị của hàm số \(y = f\left( x \right) = \frac{{2{x^2}}}{{{x^2} - 1}}\)

Sử dụng đồ thị này, hãy:
a) Viết kết quả của các giới hạn sau: \(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right)\); \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right)\); \(\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right)\); \(\mathop {\lim }\limits_{x \to - {1^ + }} f\left( x \right)\)
b) Chỉ ra các tiệm cận của đồ thị hàm số đã cho.

Xem lời giải >>
Bài 6 :

Tìm các tiệm cận của đồ thị hàm số sau:
a) \(y = \frac{{3 - x}}{{2x + 1}}\);
b) \(y = \frac{{2{x^2} + x - 1}}{{x + 2}}\).

Xem lời giải >>
Bài 7 :

Một mảnh vườn hình chữ nhật có diện tích bằng \(144{m^2}\). Biết độ dài một cạnh của mảnh vườn là x (m).

a) Viết biểu thức tính chu vi P(x) (mét) của mảnh vườn.

b) Tìm các tiệm cận của đồ thị hàm số P(x).

Xem lời giải >>
Bài 8 :

Cho hàm số \(y = f\left( x \right)\) thỏa mãn: \(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = 1;\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = 1;\mathop {\lim }\limits_{x \to  - \infty } f\left( x \right) = 2\) và \(\mathop {\lim }\limits_{x \to  + \infty } f\left( x \right) = 2\). Khẳng định nào sau đây là đúng?

A. Đường thẳng \(x = 2\) là tiệm cận đứng của đồ thị hàm số.

B. Đường thẳng \(y = 2\) là tiệm cận ngang của đồ thị hàm số.

C. Đường thẳng \(y = 1\) là tiệm cận ngang của đồ thị hàm số.

D. Đường thẳng \(x = 2\) là tiệm cận ngang của đồ thị hàm số.

Xem lời giải >>
Bài 9 :

Cho hàm số \(y = f\left( x \right)\) xác định trên \[\mathbb{R}\backslash \left\{ {1;3} \right\}\], liên tục trên mỗi khoảng xác định và có bảng biến thiên như sau:


Khẳng định nào sau đây là sai?
A. Đường thẳng \(y = 1\) là tiệm cận ngang của đồ thị hàm số đã cho.
B. Đường thẳng \(y = - 1\) là tiệm cận ngang của đồ thị hàm số đã cho.
C. Đường thẳng \(x = 3\) là tiệm cận đứng của đồ thị hàm số đã cho.
D. Đường thẳng \(x = 1\) là tiệm cận đứng của đồ thị hàm số đã cho.

Xem lời giải >>
Bài 10 :

Đồ thị trong Hình 1.37 là đồ thị của hàm số:

A. \(y = \frac{{x + 2}}{{x + 1}}\).
B. \(y = \frac{{2x + 1}}{{x + 1}}\).
C. \(y = \frac{{x - 1}}{{x + 1}}\).
D. \(y = \frac{{x + 3}}{{1 - x}}\).

Xem lời giải >>
Bài 11 :

Đồ thị trong Hình 1.38 là đồ thị của hàm số:


A. \(y = x - \frac{1}{{x + 1}}\).
B. \(y = \frac{{2x + 1}}{{x + 1}}\).
C. \(y = \frac{{{x^2} - x + 1}}{{x + 1}}\).
D. \(y = \frac{{{x^2} + x + 1}}{{x + 1}}\).

Xem lời giải >>
Bài 12 :

Tìm các tiệm cận của mỗi đồ thị hàm số sau:
a) \(y = \frac{{3x - 2}}{{x + 1}}\);
b) \(y = \frac{{{x^2} + 2x - 1}}{{2x - 1}}\).

Xem lời giải >>
Bài 13 :

Tổng số các đường tiệm cận của đồ thị hàm số \(y = \frac{{\sqrt {{x^2} - 1} }}{x}\) là

A. 0.

B. 1.

C. 2.

D. 3.

Xem lời giải >>
Bài 14 :

Tìm tiệm cận đứng, ngang, xiên (nếu có) của đồ thị mỗi hàm số sau:

a) \(y = \frac{x}{{2 - x}}\)                 

b) \(y = \frac{{2{x^2} - 3x + 2}}{{x - 1}}\)             

c) \(y = x - 3 + \frac{1}{{{x^2}}}\)

Xem lời giải >>
Bài 15 :

Số đường TCĐ và TCN của hàm số \(y = \frac{{4x + 4}}{{{x^2} + 2x + 1}}\) là:

A. 0. 

B.1.

C. 2. 

D. 3.

 
Xem lời giải >>
Bài 16 :

Tìm các đường TCN và TCĐ của mỗi hàm số sau:

A. \(y = \frac{{5x + 1}}{{3x - 2}}\)            

B. \(y = \frac{{2{x^3} - 3x}}{{{x^3} + 1}}\)                          

C. \(y = \frac{x}{{\sqrt {{x^2} - 4} }}\)

 
Xem lời giải >>
Bài 17 :

Tìm các đường tiệm cận đứng và tiệm cận xiên của đồ thị mỗi hàm số sau:

\(a,\;y = x - 3 + \frac{1}{{{x^2}}}\)

\(b,\;y = \frac{{2{x^2} - 3x + 2}}{{x - 1}}\)

\(\;c,y = \frac{{2{x^2} - x + 3}}{{2x + 1}}\)

 
Xem lời giải >>
Bài 18 :

Nếu trong một ngày, một xưởng sản xuất được x kilôgam sản phẩm thì chi phí trung bình (tính bằng nghìn đồng) cho một sản phẩm được cho bởi công thức: \(C(x) = \frac{{50x + 2000}}{x}\)

Tìm các đường tiệm cận của hàm số C(x).

 
Xem lời giải >>
Bài 19 :

Tìm các tiệm cận đứng và tiệm cận ngang của đồ thị hàm số sau:

a) \(y = \frac{{4x - 5}}{{2x - 3}}\)

b) \(y = \frac{{ - 2x + 7}}{{4x - 3}}\) 

c) \(y = \frac{{5x}}{{3x - 7}}\)

 
Xem lời giải >>
Bài 20 :

Tìm các tiệm cận của đồ thị hàm số sau:

a) \(y = \frac{{2x - 3}}{{5{x^2} - 15x + 10}}\)     

         

b) \(y = \frac{{{x^2} + x - 1}}{x}\)

  

c) \(y = \frac{{16{x^2} - 8x}}{{16{x^2} + 1}}\)

 
Xem lời giải >>
Bài 21 :

Tìm các tiệm cận đứng và tiệm cận xiên của đồ thị hàm số sau:

a) \(y = \frac{{{x^2} + 2}}{{2x - 3}}\)

b) \(y = \frac{{2{x^2} - 3x - 6}}{{x + 2}}\) 

c) \(y = \frac{{2{x^2} + 9x + 11}}{{2x + 5}}\)

 
Xem lời giải >>
Bài 22 :

Tìm tiệm cận của đồ thị hàm số khối lượng hạt \(m(v) = \frac{{{m_0}}}{{\sqrt {1 - \frac{{{v^2}}}{{{c^2}}}} }}\) trong Khởi động: Theo thuyết tương đối hẹp, khối lượng m (kg) của một hạt phụ thuộc vào tốc độ di chuyển v (km/s) của nó trong hệ quy chiếu quán tính theo công thức \(m(v) = \frac{{{m_0}}}{{\sqrt {1 - \frac{{{v^2}}}{{{c^2}}}} }}\)trong đó \({m_0}\) là khối lượng nghỉ của hạt, c = 300 000 km/s là tốc độ ánh sáng.

(Theo: https://www.britannica.com/science/relativistic-mass)

 
Xem lời giải >>
Bài 23 :

Cho hàm số f(x) có đồ thị như hình dưới đây:

Phát biểu nào sau đây đúng?

 

Xem lời giải >>
Bài 24 :

Cho hàm số f(x) có đồ thị như hình dưới đây:

Tâm đối xứng của đồ thị hàm số có tọa độ là:

Xem lời giải >>
Bài 25 :

Đồ thị hàm số dưới đây có bao nhiêu đường tiệm cận?

Xem lời giải >>
Bài 26 :

Cho hàm số y = f(x) có bảng biến thiên như sau:

Tổng số tiệm cận ngang và số tiệm cận đứng của đồ thị hàm số đã cho là:

Xem lời giải >>
Bài 27 :

Tọa độ tâm đối xứng của đồ thị hàm số \(y = \frac{{x + 4}}{{x - 3}}\) là:

Xem lời giải >>
Bài 28 :

Tọa độ tâm đối xứng của đồ thị hàm số \(y = \frac{{2x + 3}}{{x - 1}}\) là:

Xem lời giải >>
Bài 29 :

Cho hàm số y = f(x) có bảng biến thiên như hình vẽ dưới đây. Hỏi đồ thị của hàm số đã cho có bao nhiêu đường tiệm cận?

Xem lời giải >>
Bài 30 :

Tọa độ tâm đối xứng của đồ thị hàm số \(y = \frac{{2x + 3}}{{x - 1}}\) là:

Xem lời giải >>