Đề bài

Giả sử khi một cơn sóng biến đi qua một cái cọc ở ngoài khơi, chiều cao của nước được mô hình hóa bởi hàm số \(h\left( t \right) = 90\cos \left( {\frac{\pi }{{10}}t} \right)\), trong đó h(t) là độ cao tính bằng centimet trên mực nước biển trung bình tại thời điểm t giây.

a) Tìm chu kì của sóng.

b) Tìm chiều cao của sóng, tức là khoảng cách theo phương thẳng đứng giữa đáy và đỉnh của sóng.

Phương pháp giải

Sử dụng công thức chu kỳ sóng, chiều cao của sóng.

Lời giải của GV HocTot.Nam.Name.Vn

a) Chu kỳ của sóng \(T = \frac{{2\pi }}{\omega } = \frac{{2\pi }}{{\frac{\pi }{{10}}}} = 20\;\left( s \right)\)

b) Vì \( - 1 \le \cos \left( {\frac{\pi }{{10}}t} \right) \le 1 \Rightarrow  - 90 \le 90\cos \left( {\frac{\pi }{{10}}t} \right) \le 90\)

Vậy chiều cao của sóng theo phương thẳng đứng là: \(90 + 90 = 180\;\left( {cm} \right)\)

Xem thêm : SGK Toán 11 - Kết nối tri thức

Các bài tập cùng chuyên đề

Bài 1 :

Xét tình huống mở đầu.

a) Giải bài toán ở tình huống mở đầu

b) Biết rằng quá trình hít vào xảy ra khi v > 0 và quá trình thở ra khi v < 0. Trong khoảng thời gian từ 0 đến 5 giây, khoảng thời điểm nào thì người đó hít vào? Người đó thở ra?

Xem lời giải >>
Bài 2 :

Tìm tập giá trị của hàm số \(y = 2\sin x\).

Xem lời giải >>
Bài 3 :

Cho hàm số \(y = \sin x\).

a) Xét tính chẵn, lẻ của hàm số

b) Hoàn thành bảng giá trị sau của hàm số \(y = \sin x\) trên đoạn \(\left[ { - \pi ;\pi } \right]\) bằng cách tính giá trị của \(\sin x\) với những x không âm, sau đó sử dụng kết quả câu a để suy ra giá trị tương ứng của \(\sin x\) với những x âm.

            \(x\)

            \( - \pi \)

            \( - \frac{{3\pi }}{4}\)

            \( - \frac{\pi }{2}\)

            \( - \frac{\pi }{4}\)

0

            \(\frac{\pi }{4}\)

            \(\frac{\pi }{2}\)

            \(\frac{{3\pi }}{4}\)

            \(\pi \)

\(\sin x\)

?

?

?

?

?

?

?

?

?

Bằng cách lấy nhiều điểm \(M\left( {x;\sin x} \right)\) với \(x \in \left[ { - \pi ;\pi } \right]\) và nối lại ta được đồ thị hàm số \(y = \sin x\) trên đoạn \(\left[ { - \pi ;\pi } \right]\).

c) Bằng cách làm tương tự câu b cho các đoạn khác có độ dài bằng chu kỳ \(T = 2\pi \), ta được đồ thị của hàm số \(y = \sin x\) như hình dưới đây.

 

Từ đồ thị ở Hình 1.14, hãy cho biết tập giá trị, các khoảng đồng biến, các khoảng nghịch biến của hàm số \(y = \sin x\)

Xem lời giải >>
Bài 4 :

Trong vật lí, ta biết rằng phương trình tổng quát của một vật dao động điều hòa cho bởi công thức \(x\left( t \right) = A\cos (\omega t + \varphi )\), trong đó t là thời điểm (tính bằng giây), x(t) là li độ của vật tại thời điểm t, A là biên độ dao động (A > 0), \(\omega t + \varphi \) là pha dao động tại thời điểm t và \(\varphi  \in \left[ { - \pi ;\pi } \right]\) là pha ban đầu của dao động. Dao động điều hòa này có chu kỳ \(T = \frac{{2\pi }}{\omega }\) (tức là khoảng thời gian để vật thực hiện một dao động toàn phần).

Giả sử một vật dao động điều hòa theo phương trình \(x\left( t \right) =  - 5\cos 4\pi t\) (cm).

a) Hãy xác định biên độ và pha ban đầu của dao động.

b) Tính pha của dao động tại thời điểm \(t = 2\) (giây). Hỏi trong khoảng thời gian 2 giây, vật thực hiện được bao nhiêu dao động toàn phần?

Xem lời giải >>
Bài 5 :

Tìm tập giá trị của hàm số \(y =  - 3\cos x.\)

Xem lời giải >>
Bài 6 :

Cho hàm số \(y = \cos x\)

a) Xét tính chẵn, lẻ của hàm số

b) Hoàn thành bảng giá trị của hàm số \(y = \cos x\) trên đoạn \(\left[ { - \pi ;\pi } \right]\) bằng cách tính giá trị của \(\cos x\) với những x không âm, sau đó sử dụng kết quả câu a để suy ra giá trị tương ứng của \(\cos x\) với những x âm.

            \(x\)

            \( - \pi \)

            \( - \frac{{3\pi }}{4}\)

            \( - \frac{\pi }{2}\)

            \( - \frac{\pi }{4}\)

0

            \(\frac{\pi }{4}\)

            \(\frac{\pi }{2}\)

            \(\frac{{3\pi }}{4}\)

            \(\pi \)

\(\cos x\)

?

?

?

?

?

?

?

?

?

Bằng cách lấy nhiều điểm \(M\left( {x;\sin x} \right)\) với \(x \in \left[ { - \pi ;\pi } \right]\) và nối lại ta được đồ thị hàm số \(y = \cos x\) trên đoạn \(\left[ { - \pi ;\pi } \right]\).

c) Bằng cách làm tương tự câu b cho các đoạn khác có độ dài bằng chu kỳ \(T = 2\pi \), ta được đồ thị của hàm số \(y = \cos x\) như hình dưới đây.

 

Từ đồ thị ở Hình 1.15, hãy cho biết tập giá trị, các khoảng đồng biến, các khoảng nghịch biến của hàm số \(y = \cos x\)

Xem lời giải >>
Bài 7 :

Sử dụng đồ thị đã vẽ ở Hình 1.16, hãy xác định các giá trị của x trên đoạn \(\left[ { - \pi ;\frac{{3\pi }}{2}} \right]\) để hàm số \(y = \tan x\) nhận giá trị âm.

Xem lời giải >>
Bài 8 :

Cho hàm số \(y = \tan x\)

a) Xét tính chẵn, lẻ của hàm số

b) Hoàn thành bảng giá trị của hàm số \(y = \tan x\) trên khoảng\(\;\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\).

      \(x\)

     \( - \frac{\pi }{3}\)

     \( - \frac{\pi }{4}\)

      \( - \frac{\pi }{6}\)

0

\(\frac{\pi }{6}\)

\(\frac{\pi }{4}\)

\(\frac{\pi }{3}\)

\(y = \tan x\)

?

?

?

?

?

?

?

Bằng cách lấy nhiều điểm \(M\left( {x;\tan x} \right)\) với \(x \in \left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\) và nối lại ta được đồ thị hàm số \(y = \tan x\) trên khoảng \(\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\).

c) Bằng cách làm tương tự câu b cho các đoạn khác có độ dài bằng chu kỳ \(T = \pi \), ta được đồ thị của hàm số \(y = \tan x\) như hình dưới đây.

 

Từ đồ thị ở Hình 1.16, hãy tìm tập giá trị và các khoảng đồng biến của hàm số \(y = \tan x\).

Xem lời giải >>
Bài 9 :

Sử dụng đồ thị đã vẽ ở Hình 1.17, hãy xác định các giá trị của x trên đoạn \(\left[ { - \frac{\pi }{2};2\pi } \right]\) để hàm số \(y = \cot x\) nhận giá trị dương.

Xem lời giải >>
Bài 10 :

Cho hàm số \(y = \cot x\)

a) Xét tính chẵn, lẻ của hàm số

b) Hoàn thành bảng giá trị của hàm số \(y = \cot x\) trên khoảng\(\;\left( {0;\pi } \right)\).

      \(x\)

\(\frac{\pi }{6}\)

\(\frac{\pi }{4}\)

\(\frac{\pi }{3}\)

\(\frac{\pi }{2}\)

\(\frac{{2\pi }}{3}\)

\(\frac{{3\pi }}{4}\)

\(\frac{{5\pi }}{6}\)

     \(y = \cot x\)

?

?

?

?

?

?

?

Bằng cách lấy nhiều điểm \(M\left( {x;\cot x} \right)\) với \(x \in \left( {0;\pi } \right)\) và nối lại ta được đồ thị hàm số \(y = \cot x\) trên khoảng \(\left( {0;\pi } \right)\).

c) Bằng cách làm tương tự câu b cho các đoạn khác có độ dài bằng chu kỳ \(T = \pi \), ta được đồ thị của hàm số \(y = \cot x\) như hình dưới đây.

 

Từ đồ thị ở Hình 1.17, hãy tìm tập giá trị và các khoảng nghịch biến của hàm số \(y = \cot x\)

Xem lời giải >>
Bài 11 :

Từ đồ thị của hàm số \(y = \tan x\), hãy tìm các giá trị x sao cho \(\tan x = 0.\)

Xem lời giải >>
Bài 12 :

Khẳng định nào sau đây là sai?

A. Hàm số \(y = \cos x\) có tập xác định là \(\mathbb{R}\)

B. Hàm số \(y = \cos x\) có tập giá trị là [-1;1]

C. Hàm số \(y = \cos x\) là hàm số lẻ

D. Hàm số \(y = \cos x\) tuần hoàn với chu kỳ \(2\pi \)

Xem lời giải >>
Bài 13 :

Tìm tập giá trị của các hàm số sau:

a) \(y = 2\cos \left( {2x - \frac{\pi }{3}} \right) - 1;\)                       

b) \(y = \sin x + \cos x\).

Xem lời giải >>
Bài 14 :

Hàm số \(y = \sin x\) đồng biến hay nghịch biến trên khoảng \(\left( { - \frac{{7\pi }}{2}; - \frac{{5\pi }}{2}} \right)\)

Xem lời giải >>
Bài 15 :

Quan sát đồ thị hàm số \(y = \sin x\) ở Hình 25.

a)     Nêu tập giá trị của hàm số \(y = \sin x\)

b)     Gốc tọa độ có là tâm đối xứng của đồ thị hàm số không? Từ đó kết luận tính chẵn, lẻ của hàm số \(y = \sin x\)

c)     Bằng cách dịch chuyển đồ thị hàm số \(y = \sin x\) trên đoạn \(\left[ { - \pi ;\pi } \right]\) song song với trục hoành sang phải theo đoạn có độ dài \(2\pi \), ta có nhận được đồ thị hàm số \(y = \sin x\) trên đoạn \(\left[ {\pi ;3\pi } \right]\) hay không? Hàm số \(y = \sin x\)có tuần hoàn hay không/

d)     Tìm khoảng đồng biến, nghịch biến của hàm số \(y = \sin x\)

Xem lời giải >>
Bài 16 :

Cho hàm số \(y = \sin x\)

a)     Tìm giá trị y tương ứng với giá trị của x trong bảng sau:

x

\( - \pi \)

\( - \frac{{5\pi }}{6}\)

\( - \frac{\pi }{2}\)

\( - \frac{\pi }{6}\)

0

\(\frac{\pi }{6}\)

\(\frac{\pi }{2}\)

\(\frac{{5\pi }}{6}\)

\(\pi \)

\(y = \sin x\)

?

?

?

?

?

?

?

?

?

b)    Trong mặt phẳng Oxy, hãy biểu diễn các điểm \(\left( {x;y} \right)\) trong bảng giá trị ở câu a. Bằng cách làm tương tự, lấy nhiều điểm \(\left( {x;\sin x} \right)\) với \(x \in \left[ { - \pi ;\pi } \right]\) với nối lại ta được đồ thị hàm số \(y = \sin x\) trên đoạn \(\left[ { - \pi ;\pi } \right]\)(Hình 24).

 

c)     Làm tương tự như trên đối với các đoạn \(\left[ { - 3\pi ; - \pi } \right]\), \(\left[ {\pi ;3\pi } \right]\),...ta có đồ thị hàm số \(y = \sin x\)trên R được biểu diễn ở Hình 25.

Xem lời giải >>
Bài 17 :

Với mỗi số thực x, tồn tại duy nhất điểm M trên đường tròn lượng giác sao cho \(\left( {OA,OM} \right) = x\left( {rad} \right)\) (Hình 23). Hãy xác định \(\sin x\).

Xem lời giải >>
Bài 18 :

Hàm số \(y = \cos x\) đồng biến hay nghịch biến trên khoảng \(\left( { - 2\pi ; - \pi } \right)\)

Hàm số \(y = \cos x\)đồng biến trên mỗi khoảng \(\left( { - \pi  + k2\pi ;k2\pi } \right)\), nghịch biến trên mỗi khoảng \(\left( {k2\pi ;\pi  + k2\pi } \right)\) với \(k \in Z\)

Xem lời giải >>
Bài 19 :

Quan sát đồ thị \(y = \cos x\) ở Hình 28

 

a)     Nêu tập giá trị của hàm số \(y = \cos x\)

b)     Trục tung có là trục đối xứng của đồ thị hàm số không? Từ đó kết luận tính chẵn, lẻ của hàm số \(y = \cos x\)

c)     Bằng cách dịch chuyển đồ thị \(y = \cos x\) trên đoạn \(\left[ { - \pi ;\pi } \right]\) song song với trục hoành sang phải theo đoạn có độ dài \(2\pi \), ta nhận được đồ thị có hàm số \(y = \cos x\) trên đoạn \(\left[ {\pi ;3\pi } \right]\) hay không? Hàm số \(y = \cos x\) có tuần hoàn hay không?

d)     Tìm khoảng đồng biến, nghịch biến của hàm số \(y = \cos x\)

Xem lời giải >>
Bài 20 :

Cho hàm số \(y = \cos x\)

a)     Tìm giá trị y tương ứng với giá trị của x trong bảng sau:

x

\( - \pi \)

\( - \frac{{2\pi }}{3}\)

\[ - \frac{\pi }{2}\]

\( - \frac{\pi }{3}\)

0

\(\frac{\pi }{3}\)

\(\frac{\pi }{2}\)

\(\frac{{2\pi }}{3}\)

\(\pi \)

\(y = \cos x\)

?

?

?

?

?

?

?

?

?

b)    Trong mặt phẳng tọa độ Oxy, hãy biểu diễn các điểm (x; y) trong bảng giá trị ở câu a. Bằng cách làm tương tự, lấy nhiều điểm \(\left( {x;\cos x} \right)\) với \(x \in \left[ { - \pi ;\pi } \right]\) và nối lại ta được đồ thị hàm

số \(y = \cos x\) trên đoạn \(x \in \left[ { - \pi ;\pi } \right]\) (Hình 27)

 

c) Làm tương tự như trên đối với các đoạn \(\left[ { - 3\pi ; - \pi } \right]\), \(\left[ {\pi ;3\pi } \right]\),...ta có đồ thị hàm số \(y = \cos x\)trên R được biểu diễn ở Hình 28.

Xem lời giải >>
Bài 21 :

Với mỗi số thực x, tồn tại duy nhất điểm M trên đường tròn lượng giác sao cho \(\left( {OA,OM} \right) = x\left( {rad} \right)\) (Hình 26). Hãy xác định \(\cos x\)

Xem lời giải >>
Bài 22 :

Với mỗi số thực m, tìm số giao điểm của đường thẳng y=m với đồ thị hàm số \(y = \tan x\)trên khoảng \(\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\)

Xem lời giải >>
Bài 23 :

Quan sát đồ thị hàm số \(y = \tan x\) ở Hình 30

a)     Nêu tập giá trị của hàm số \(y = \tan x\)

b)     Gốc tọa độ có là tâm đối xứng của đồ thị hàm số hay không? Từ đó kết luận tính chẵn, lẻ của hàm số \(y = \tan x\)

c)     Bằng cách dịch chuyển đồ thị hàm số \(y = \tan x\) trên khoảng \(\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\) song song với trục hoành sang phải theo đoạn có độ dài π, ta nhận được đồ thị hàm số \(y = \tan x\) trên khoảng \(\left( {\frac{\pi }{2};\frac{{3\pi }}{2}} \right)\) hay không? Hàm số \(y = \tan x\) có tuần hoàn hay không?

d)     Tìm khoảng đồng biến, nghịch biến của hàm số \(y = \tan x\)

Xem lời giải >>
Bài 24 :

a)     Tìm giá trị y tương ứng với giá trị của x trong bảng sau:

x

\( - \frac{\pi }{3}\)

\( - \frac{\pi }{4}\)

0

\(\frac{\pi }{4}\)

\(\frac{\pi }{3}\)

\(y = \tan x\)

?

?

?

?

?

b)     Trong mặt phẳng tọa độ Oxy, hãy biểu diễn các điểm (x; y) trong bảng giá trị ở câu a. Bằng cách làm tương tự, lấy nhiều điểm (x; tanx) với \(x \in \left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\) và nối lại ta được đồ thị hàm số \(y = \tan x\) trên khoảng \(\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\) (Hình 29).

c)     Làm tương tự như trên đối với các khoảng \(\left( {\frac{\pi }{2};\frac{{3\pi }}{2}} \right),\left( { - \frac{{3\pi }}{2}; - \frac{\pi }{2}} \right)\),...ta có đồ thị hàm số \(y = \tan x\)trên D được biểu diễn ở Hình 30.

Xem lời giải >>
Bài 25 :

Xét tập hợp \(D = \mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi |\,k \in \mathbb{Z}} \right\}\). Với mỗi số thực \(x \in D\), hãy nêu định nghĩa \(\tan x\)

Xem lời giải >>
Bài 26 :

Với mỗi số thực m, tìm số giao điểm của đường thẳng y=m với đồ thị hàm số \(y = \cot x\)trên khoảng \(\left( {0;\pi } \right)\)

Xem lời giải >>
Bài 27 :

Quan sát đồ thị hàm số \(y = \cot x\) ở Hình 32.

a)     Nêu tập giá trị của hàm số \(y = \cot x\)

b)     Gốc tọa độ có là tâm đối xứng của đồ thị hàm số không? Từ đó kết luận tính chẵn, lẻ của hàm số \(y = \cot x\)

c)     Bằng cách dịch chuyển đồ thị hàm số \(y = \cot x\) trên khoảng \(\left( {0;\pi } \right)\) song song với trục hoành sang phải theo đoạn có độ dài \(\pi \), ta nhận được \(y = \cot x\) trên khoảng \(\left( {\pi ;2\pi } \right)\) hay không? Hàm số \(y = \cot x\) có tuần hoàn hay không?

d)     Tìm khoảng đồng biến, nghịch biến của hàm số \(y = \cot x\)

Xem lời giải >>
Bài 28 :

Cho hàm số \(y = \cot x\)

a)     Tìm giá trị y tương ứng với giá trị của x trong bảng sau:

x

\(\frac{\pi }{6}\)

\(\frac{\pi }{4}\)

\(\frac{\pi }{2}\)

\(\frac{{3\pi }}{4}\)

\(\frac{{5\pi }}{6}\)

\(y = \cot x\)

?

?

?

?

?

b)     Trong mặt phẳng tọa độ Oxy, hãy biểu diễn các điểm (x; y) trong bảng giá trị ở câu a. Bằng cách làm tương tự, lấy nhiều điểm (x; cotx) với \(x \in \left( {0;\pi } \right)\) và nối lại ta được đồ thị hàm số \(y = \cot x\) trên khoảng \(\left( {0;\pi } \right)\) (Hình 31)

c)     Làm tương tự như trên đối với các khoảng \(\left( {\pi ;2\pi } \right),\left( { - \pi ;0} \right),\left( { - 2\pi ; - \pi } \right),....\)ta có đồ thị hàm số \(y = \cot x\)trên E được biểu diễn ở Hình 32.

Xem lời giải >>
Bài 29 :

Xét tập hợp \(E = R\backslash \left\{ {k\pi |k \in \mathbb{Z}} \right\}\). Với mỗi số thực \(x \in E\), hãy nêu định nghĩ \(\cot x\)

Xem lời giải >>
Bài 30 :

Dùng đồ thị hàm số, tìm giá trị của x trên đoạn \(\left[ { - 2\pi ;2\pi } \right]\) để:

a)     Hàm số y = sinx nhận giá trị bằng 1

b)     Hàm số y = sinx nhận giá trị bằng 0

c)     Hàm số y = cosx nhận giá trị bằng – 1

d)     Hàm số y = cosx nhận giá trị bằng 0

Xem lời giải >>