Đề bài

Rút gọn các biểu thức sau:

a) \(\frac{{5 + 3\sqrt 5 }}{{\sqrt 5 }} - \frac{1}{{\sqrt 5  - 2}};\)

b) \(\sqrt {{{\left( {\sqrt 7  - 2} \right)}^2}}  - \sqrt {63}  + \frac{{\sqrt {56} }}{{\sqrt 2 }};\)

c) \(\frac{{\sqrt {{{\left( {\sqrt 3  + \sqrt 2 } \right)}^2}}  + \sqrt {{{\left( {\sqrt 3  - \sqrt 2 } \right)}^2}} }}{{2\sqrt {12} }};\)

d) \(\frac{{\sqrt[3]{{{{\left( {\sqrt 2  + 1} \right)}^3}}} - 1}}{{\sqrt {50} }}.\)

Phương pháp giải

Sử dụng kết hợp các phương pháp trục căn thức, khai căn bặc hai, bậc ba, đưa thừa số ra ngoài dấu căn, rồi thu gọn biểu thức.

Lời giải của GV HocTot.Nam.Name.Vn

a) \(\frac{{5 + 3\sqrt 5 }}{{\sqrt 5 }} - \frac{1}{{\sqrt 5  - 2}}\)

\(\begin{array}{l} = \frac{{\sqrt 5\left( {\sqrt 5 + 3 } \right) }}{{\sqrt 5 }} - \frac{{\sqrt 5  + 2}}{{\left( {\sqrt 5  - 2} \right)\left( {\sqrt 5  + 2} \right)}}\\ =\sqrt 5  + 3  - \frac{{\sqrt 5  + 2}}{{5 - 4}}\end{array}\)

\(\begin{array}{l} = \sqrt 5  + 3 - \left( {\sqrt 5  + 2} \right)\\ = 1\end{array}\)

b) \(\sqrt {{{\left( {\sqrt 7  - 2} \right)}^2}}  - \sqrt {63}  + \frac{{\sqrt {56} }}{{\sqrt 2 }}\)

\(\begin{array}{l} = \left| {\sqrt 7  - 2} \right| - \sqrt {9.7}  + \frac{{\sqrt {2.28} }}{{\sqrt 2 }}\\ = \sqrt 7  - 2 - 3\sqrt 7  + \sqrt {28} \\ =  - 2 - 2\sqrt 7  + \sqrt {4.7} \end{array}\)

\(\begin{array}{l} =  - 2 - 2\sqrt 7  + 2\sqrt 7 \\ =  - 2\end{array}\)

c) \(\frac{{\sqrt {{{\left( {\sqrt 3  + \sqrt 2 } \right)}^2}}  + \sqrt {{{\left( {\sqrt 3  - \sqrt 2 } \right)}^2}} }}{{2\sqrt {12} }}\)

\(\begin{array}{l} = \frac{{\left| {\sqrt 3  + \sqrt 2 } \right| + \left| {\sqrt 3  - \sqrt 2 } \right|}}{{2\sqrt {4.3} }}\\ = \frac{{\sqrt 3  + \sqrt 2  + \sqrt 3  - \sqrt 2 }}{{4\sqrt 3 }}\\ = \frac{{2\sqrt 3 }}{{4\sqrt 3 }}\\ = \frac{1}{2}\end{array}\)

d) \(\frac{{\sqrt[3]{{{{\left( {\sqrt 2  + 1} \right)}^3}}} - 1}}{{\sqrt {50} }}\)

\(\begin{array}{l} = \frac{{\sqrt 2  + 1 - 1}}{{\sqrt {25.2} }}\\ = \frac{{\sqrt 2 }}{{5\sqrt 2 }}\\ = \frac{1}{5}\end{array}\)

Xem thêm : SGK Toán 9 - Kết nối tri thức

Các bài tập cùng chuyên đề

Bài 1 :

Khẳng định nào sau đây là sai?

Xem lời giải >>
Bài 2 :

Chọn khẳng định đúng, với $a \ne 0$ ta có

Xem lời giải >>
Bài 3 :

Rút gọn biểu thức \(\sqrt[3]{{\dfrac{{ - 27}}{{512}}{a^3}}} + \sqrt[3]{{64{a^3}}} - \dfrac{1}{3}\sqrt[3]{{1000{a^3}}}\) ta được

Xem lời giải >>
Bài 4 :

Tìm $x$ biết $\sqrt[3]{{2x + 1}} >  - 3$.

Xem lời giải >>
Bài 5 :

Tìm số nguyên nhỏ nhất thỏa mãn bất phương trình  $\sqrt[3]{{3 - 2x}} \le 4$.

Xem lời giải >>
Bài 6 :

Số nghiệm của phương trình  $\sqrt[3]{{2x + 1}} = 3$ là

Xem lời giải >>
Bài 7 :

Kết luận nào đúng khi nói về nghiệm của phương trình  $\sqrt[3]{{3x - 2}} =  - 2$

Xem lời giải >>
Bài 8 :

Số nghiệm của phương trình  $\sqrt[3]{{5 + x}} - x = 5$ là

Xem lời giải >>
Bài 9 :

Tổng các nghiệm của phương trình  \(\sqrt[3]{{12 - 2x}} + \sqrt[3]{{23 + 2x}} = 5\) là

Xem lời giải >>
Bài 10 :

Thu gọn $\sqrt[3]{{125{a^3}}}$ ta được

Xem lời giải >>
Bài 11 :

Thu gọn $\sqrt[3]{{ - \dfrac{1}{{27{a^3}}}}}$ với $a \ne 0$ ta được

Xem lời giải >>
Bài 12 :

Khẳng định nào sau đây là đúng?

Xem lời giải >>
Bài 13 :

Chọn khẳng định đúng với \(a \ne 0\) ta được:

Xem lời giải >>
Bài 14 :

Rút gọn biểu thức \(2\sqrt[3]{{27{a^3}}} - 3\sqrt[3]{{8{a^3}}} + 4\sqrt[3]{{125{a^3}}}\) ta được:

Xem lời giải >>
Bài 15 :

Tìm \(x\) biết \(\sqrt[3]{{4 - 2x}} > 4\).

Xem lời giải >>
Bài 16 :

Tìm số nguyên lớn nhất thỏa mãn bất phương trình  \(\sqrt[3]{{7 + 4x}} \le 5\).

Xem lời giải >>
Bài 17 :

Nghiệm của phương trình \(\sqrt[3]{{2 - 3x}} =  - 3\) là:

Xem lời giải >>
Bài 18 :

Kết luận nào đúng khi nói về nghiệm của phương trình  \(\sqrt[3]{{{x^3} + 6{x^2}}} = x + 2.\)

Xem lời giải >>
Bài 19 :

Tổng các nghiệm của phương trình \(\sqrt[3]{{x - 2}} + 2 = x\) là:

Xem lời giải >>
Bài 20 :

Tập nghiệm của phương trình  \(\sqrt[3]{{x + 1}} + \sqrt[3]{{7 - x}} = 2\) là:

Xem lời giải >>
Bài 21 :

Tính giá trị của các biểu thức sau:

a) \(3\sqrt {45}  + \frac{{5\sqrt {15} }}{{\sqrt 3 }} - 2\sqrt {245} ;\)

b) \(\frac{{\sqrt {12}  - \sqrt 4 }}{{\sqrt 3  - 1}} - \frac{{\sqrt {21}  + \sqrt 7 }}{{\sqrt 3  + 1}} + \sqrt 7 ;\)

c) \(\frac{{3 - \sqrt 3 }}{{1 - \sqrt 3 }} + \sqrt 3 \left( {2\sqrt 3  - 1} \right) + \sqrt {12} ;\)

d) \(\frac{{\sqrt 3  - 1}}{{\sqrt 2 }} + \frac{{\sqrt 2 }}{{\sqrt 3  - 1}} - \frac{6}{{\sqrt 6 }}.\)

Xem lời giải >>
Bài 22 :

Rút gọn các biểu thức sau:

a) \(\sqrt[3]{{{{\left( { - x - 1} \right)}^3}}};\)

b) \(\sqrt[3]{{8{x^3} - 12{x^2} + 6x - 1}}.\)

Xem lời giải >>
Bài 23 :

Tìm x, biết:

a) x3 = - 27

b) x3 = \(\frac{{64}}{{125}}\)

c) \(\sqrt[3]{x} = 8\)

d) \(\sqrt[3]{x} =  - 0,9\)

Xem lời giải >>
Bài 24 :

Rút gọn các biểu thức:

a) \(\sqrt[3]{{{m^6}}}\);

b) \(\sqrt[3]{{ - 27{n^3}}}\);

c) \(\sqrt[3]{{64{y^3}}} - 7y\);

d) \(\frac{{\sqrt[3]{{12{z^9}}}}}{{\sqrt[3]{{96}}}}\).

Xem lời giải >>
Bài 25 :

Tìm x, biết rằng:

a) \(\sqrt[3]{{x - 2}} = 3\);

b) \(6x + \sqrt[3]{{ - 8{x^3}}} = 2x + 1\).

Xem lời giải >>
Bài 26 :

Không dùng MTCT, tính \({\left( {\sqrt[3]{5}.\sqrt[3]{7}} \right)^3}\). Sử dụng kết quả nhận được, hãy giải thích vì sao \(\sqrt[3]{5}.\sqrt[3]{7} = \sqrt[3]{{5.7}}\)

Xem lời giải >>
Bài 27 :

Rút gọn biểu thức \(\sqrt[3]{{{{\left( {4 - \sqrt {17} } \right)}^3}}}\) ta được

A. \(4 + \sqrt {17} \).

B. \(4 - \sqrt {17} \).

C. \(\sqrt {17}  - 4\).

D. \( - 4 - \sqrt {17} \).

Xem lời giải >>
Bài 28 :

Kết quả của \(\sqrt[3]{{{{\left( {x - 1} \right)}^3}}}\) là

Xem lời giải >>
Bài 29 :

Thu gọn \(\sqrt[3]{{125{a^3}}}\) ta được

Xem lời giải >>