Đề bài

Cho tam giác ABC nhọn (AB < AC)  có hai đường cao BE, CF cắt nhau tại H

a) Chứng minh $\Delta ABE\backsim \Delta ACF$

b) Đường thẳng qua E song song với AB, cắt đoạn CH tại D. Chứng minh \(H{E^2} = HD.HC\).

c) Gọi I là trung điểm của CB. Các đường thẳng kẻ từ B song song với CF và từ C song song với BE cắt nhau tại K. Chứng minh H, I, K thẳng hàng.

Phương pháp giải

a) Chứng minh $\Delta ABE\backsim \Delta ACF$ theo trường hợp góc – góc.

b) Chứng minh $\Delta HED\backsim \Delta HCE$ suy ra tỉ số đồng dạng, ta được điều phải chứng minh.

c) Chứng minh BHCK là hình bình hành nên hai đường chéo cắt nhau tại trung điểm của mỗi đường. Mà I là trung diểm của BC nên I là trung điểm của HK hay H, I, K thẳng hàng.

Lời giải của GV HocTot.Nam.Name.Vn

a) Xét \(\Delta ABE\) và \(\Delta ACF\) có:

\(\widehat {BEA} = \widehat {CFA} = {90^0}\)

\(\widehat A\) chung

suy ra $\Delta ABE\backsim \Delta ACF$ (g.g) (đpcm)

b) Ta có DE // AB nên \(\widehat {HED} = \widehat {ABE}\) (hai góc so le trong)

\(\widehat {ACF} = \widehat {ABE}\) (do $\Delta ABE\backsim \Delta ACF$)

suy ra \(\widehat {ACF} = \widehat {HED}\)

Xét \(\Delta HED\) và \(\Delta HCE\) có:

\(\widehat H\) chung

\(\widehat {ACF} = \widehat {HED}\)

suy ra $\Delta HED\backsim \Delta HCE$ (g.g)

suy ra \(\frac{{HE}}{{HC}} = \frac{{HD}}{{HE}}\) hay \(H{E^2} = HD.HC\) (đpcm)

c) Xét tứ giác BHCK có:

BH // CK (gt)

BK // HC (gt)

suy ra BHCK là hình bình hành.

Suy ra BC và HK cắt nhau tại trung điểm của mỗi đường.

Mà I là trung điểm của BC nên I cũng là trung điểm của HK hay H, I, K thẳng hàng (đpcm).

Các bài tập cùng chuyên đề

Bài 1 :

Cho công thức \(C = \frac{5}{9}\left( {F - 32} \right)\) với C = 10. Tính \(F\), ta được kết quả:

Xem lời giải >>
Bài 2 :

Cho $\Delta ABC\backsim \Delta DEF$ theo tỉ số đồng dạng \(\frac{1}{2}\) thì tỉ số hai đường cao tương ứng là:

Xem lời giải >>
Bài 3 :

Một mô hình ô tô dài 12cm. Thực tế ô tô dài 2,4m. Tỉ số đồng dạng của mô hình và vật thật là:

Xem lời giải >>
Bài 4 :

Có hai chiếc cột dựng thẳng đứng trên mặt đất với chiều cao lần lượt là 5 m và 3 m. Người ta nối hai sợi dây từ đỉnh cột này đến chân cột kia và hai sợi dây cắt nhau tại một điểm. Tính độ cao ℎ của điểm đó so với mặt đất.

Xem lời giải >>