Nội dung từ Loigiaihay.Com
Cho tam giác ABC đồng dạng với tam giác DEF theo tỉ số đồng dạng là 2. Tam giác DEF đồng dạng với tam giác MNP theo tỉ số đồng dạng là 2. Biết \(\widehat A = {30^0}\), tính số đo \(\widehat M\)
Chứng minh $\Delta ABC\backsim \Delta MNP$ suy ra số đo góc M.
Vì $\Delta ABC\backsim \Delta DEF$ và $\Delta DEF\backsim \Delta MNP$ suy ra $\Delta ABC\backsim \Delta MNP$ suy ra \(\widehat M = \widehat A = {30^0}\).
Đáp án A.
Đáp án : A
Các bài tập cùng chuyên đề
Năm nay tuổi mẹ gấp 3 lần tuổi Phương. Phương tính rằng 13 năm nữa thì tuổi mẹ chỉ còn gấp 2 lần tuổi Phương. Gọi x là tuổi của Phương năm nay vậy thì phương trình tìm x là
Lớp 8B có 40 học sinh trong đó có 18 học sinh nữ. Lớp phó lao động chọn một bạn để trực nhật trong một buổi học. Xác suất thực nghiệm của biến cố “Một bạn nam trực nhật lớp trong buổi học” là:
Tam ABC có M, N, P lần lượt là trung điểm của AB, BC, CA. Biết chu vi tam giác MNP là 12cm, chu vi tam giác ABC là:
Giải các phương trình sau:
a) \(x + 2 = - 6x + 16\)
b) \(2\left( {x - 3} \right) = 5\left( {x - 2} \right) + 8\)
c) \(\frac{{x - 1}}{9} + \frac{{x - 3}}{7} = 2\)
d) \(\frac{{2x + 1}}{3} + \frac{{3x - 2}}{2} = \frac{1}{6}\)
1. Có hai chiếc cột dựng thẳng đứng trên mặt đất với chiều cao lần lượt là 5 m và 3 m. Người ta nối hai sợi dây từ đỉnh cột này đến chân cột kia và hai sợi dây cắt nhau tại một điểm. Tính độ cao ℎ của điểm đó so với mặt đất.
2. Cho tam giác ABC nhọn (AB < AC) có hai đường cao BE, CF cắt nhau tại H
a) Chứng minh $\Delta ABE\backsim \Delta ACF$
b) Đường thẳng qua E song song với AB, cắt đoạn CH tại D. Chứng minh \(H{E^2} = HD.HC\).
Cho ba số thực a, b, c khác 2 thỏa mãn a + b + c = 6. Tính giá trị của biểu thức:
\(M = \frac{{{{\left( {a - 2} \right)}^2}}}{{\left( {b - 2} \right)\left( {c - 2} \right)}} + \frac{{{{\left( {b - 2} \right)}^2}}}{{\left( {a - 2} \right)\left( {c - 2} \right)}} + \frac{{{{\left( {c - 2} \right)}^2}}}{{\left( {a - 2} \right)\left( {b - 2} \right)}}\)