Đề bài

Cho tứ diện ABCD có \(AB = CD = 2a\). Gọi M, N, I lần lượt là trung điểm của BC, AD, AC. Biết rằng \(MN = a\sqrt 3 \). Tính góc giữa hai đường thẳng AB và CD.

  • A.
    \({90^0}\).
  • B.
    \({60^0}\).
  • C.
    \({30^0}\).
  • D.
    \({70^0}\).
Phương pháp giải

+ Góc giữa hai đường thẳng a và b trong không gian là góc giữa hai đường thẳng a’ và b’ cùng đi qua một điểm O và lần lượt song song (hoặc trùng) với a và b; kí hiệu \(\left( {a,b} \right)\) hoặc \(\widehat {\left( {a;b} \right)}\).

+ Góc giữa hai đường thẳng không vượt quá \({90^0}\).

Lời giải của GV HocTot.Nam.Name.Vn

Vì IM là đường trung bình của tam giác ABC nên IM//AB và \(IM = \frac{{AB}}{2} = a\)

Vì IN là đường trung bình của tam giác ADC nên IN//CD và \(IN = \frac{{CD}}{2} = a\)

Do đó, \(\left( {AB,CD} \right) = \left( {IM,IN} \right)\)

Áp dụng định lí côsin vào tam giác MNI ta có:

\(M{N^2} = I{M^2} + I{N^2} - 2IM.IN.\cos \widehat {MIN} \Rightarrow 3{a^2} = {a^2} + {a^2} - 2a.a.\cos \widehat {MIN} \Rightarrow \cos \widehat {MIN} = \frac{{ - 1}}{2} \Rightarrow \widehat {MIN} = {120^0}\)

Suy ra: \(\left( {AB,CD} \right) = \left( {IM,IN} \right) = {180^0} - \widehat {MIN} = {180^0} - {120^0} = {60^0}\)

Đáp án B.

Đáp án : B

Các bài tập cùng chuyên đề

Bài 1 :

Chọn đáp án đúng.

Với a là số thực khác 0 thì:

Xem lời giải >>
Bài 2 :

Cho biểu thức \(P = \sqrt[6]{x}\) với \(x > 0\). Mệnh đề nào dưới đây là đúng?

Xem lời giải >>
Bài 3 :

Chọn đáp án đúng:

Xem lời giải >>
Bài 4 :

Cho a là số dương, rút gọn biểu thức \(\frac{{\sqrt a .\sqrt[3]{{{a^2}}}}}{{\sqrt[4]{a}}}\) được kết quả là:

Xem lời giải >>
Bài 5 :

Giả sử một lọ nuôi cấy 100 con vi khuẩn lúc ban đầu và số lượng vi khuẩn tăng gấp đôi sau mỗi 2 giờ. Khi đó, số vi khuẩn N sau t giờ là \(N = {100.2^{\frac{t}{2}}}\) (con). Sau 4 giờ 30 phút thì có bao nhiêu con vi khuẩn? (làm tròn đến hàng đơn vị).

Xem lời giải >>
Bài 6 :

Cho hai số thực dương a, b với a khác 1. Số thực c để… được gọi là lôgarit cơ số a của b và kí hiệu là \({\log _a}b\).

Biểu thức phù hợp để điền vào “…” được câu đúng là:  

Xem lời giải >>
Bài 7 :

Chọn đáp án đúng.

Với \(a,b > 0,a \ne 1\) thì:

Xem lời giải >>
Bài 8 :

Chọn đáp án đúng:

Với n số thực dương \({b_1},{b_2},..,{b_n},a > 0,a \ne 1\) thì:

Xem lời giải >>
Bài 9 :

Cho x và y là các số dương. Khẳng định nào sau đây là đúng?

Xem lời giải >>
Bài 10 :

Giá trị của biểu thức \(2{\log _5}10 + {\log _{25}}0,25\) là:

Xem lời giải >>
Bài 11 :

Hàm số \(y = {\log _a}x\left( {a > 0,a \ne 1} \right)\) đồng biến trên \(\left( {0; + \infty } \right)\) với giá trị nào của a dưới đây?

Xem lời giải >>
Bài 12 :

Hàm số nào dưới đây là không phải hàm số mũ?

Xem lời giải >>
Bài 13 :

Hàm số nào sau đây có tập xác định là \(\mathbb{R}\)?

Xem lời giải >>
Bài 14 :

Hàm số \(y = {\log _{10}}x\) có tập giá trị là:

Xem lời giải >>
Bài 15 :

Cho đồ thị hàm số \(y = {\log _a}x\left( {0 < a \ne 1} \right)\) có đồ thị là hình dưới đây:

Tìm a.

Xem lời giải >>
Bài 16 :

Có bao nhiêu giá trị nguyên của a để hàm số \(y = {\left( { - {a^2} + 2a + 4} \right)^x}\) đồng biến trên \(\mathbb{R}\)?

Xem lời giải >>
Bài 17 :

Cho bất phương trình \({6^x} > b\). Với giá trị nào của b thì bất phương trình đã cho có tập nghiệm là \(\mathbb{R}\)?

Xem lời giải >>
Bài 18 :

Tập nghiệm của bất phương trình \({\left( {\frac{1}{{\sqrt {15} }}} \right)^x} > \frac{1}{{\sqrt {15} }}\) là

Xem lời giải >>
Bài 19 :

Phương trình \({3^{ - x}} = 4\) có nghiệm là:  

Xem lời giải >>
Bài 20 :

Phương trình \({e^{2x}} - 5{e^x} = 0\) có bao nhiêu nghiệm?

Xem lời giải >>